Skip to main content

2024 | OriginalPaper | Buchkapitel

A Novel Approach to Image Restoration and Image Enhancement

verfasst von : Divya Singh, Bhawna Upadhayay, Pradeep Gupta, Sonam Gupta

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image restoration and image enhancement are fundamental tasks in computer vision and image processing. Image restoration aims to recover the original information from a degraded or corrupted image, while image enhancement aims to improve the visual quality and interpretability of an image. This research paper presents a comprehensive theoretical framework that integrates both image restoration and image enhancement techniques. We explore various methods, algorithms, and mathematical models to address the challenges associated with these tasks. The proposed framework leverages both classical and deep learning-based approaches to achieve superior performance in restoring and enhancing images. The experimental results demonstrate the effectiveness and versatility of our proposed approach in a wide range of applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reader, A.J., Corda, G., Mehranian, A., da Costa-Luis, C., Ellis, S., Schnabel, J.A.: Deep learning for pet image reconstruction. IEEE Trans. Radiat. Plasma Med. Sci. (2020) Reader, A.J., Corda, G., Mehranian, A., da Costa-Luis, C., Ellis, S., Schnabel, J.A.: Deep learning for pet image reconstruction. IEEE Trans. Radiat. Plasma Med. Sci. (2020)
2.
Zurück zum Zitat Zhang, L., Qi, Z., Meng, F.: A review on the construction of business intelligence system based on unstructured image data. Procedia Comput. Sci. 199 (2022) Zhang, L., Qi, Z., Meng, F.: A review on the construction of business intelligence system based on unstructured image data. Procedia Comput. Sci. 199 (2022)
3.
Zurück zum Zitat Trongtirakul, T., Ladyzhensky, D., Chiracharit, W., Agaian, S.: Non-linear contrast stretching with optimizations. In: Mobile Multimedia/Image Processing, Security, and Applications (2019) Trongtirakul, T., Ladyzhensky, D., Chiracharit, W., Agaian, S.: Non-linear contrast stretching with optimizations. In: Mobile Multimedia/Image Processing, Security, and Applications (2019)
4.
Zurück zum Zitat Zhao, L., Wang, K., Zhang, J., Wang, A., Bai, H.: Learning deep texture-structure decomposition for low-light image restoration and enhancement. Elsevier (2022) Zhao, L., Wang, K., Zhang, J., Wang, A., Bai, H.: Learning deep texture-structure decomposition for low-light image restoration and enhancement. Elsevier (2022)
5.
Zurück zum Zitat Aslam, M., Naseer, I.: Removal of the noise & blurriness using global & local image enhancement equalization techniques. IJCISV1 Aslam, M., Naseer, I.: Removal of the noise & blurriness using global & local image enhancement equalization techniques. IJCISV1
6.
Zurück zum Zitat Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., Kot, A.: Low-light image enhancement with normalizing flow. In: Proceedings of the AAAI Conference on Artificial Intelligence Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., Kot, A.: Low-light image enhancement with normalizing flow. In: Proceedings of the AAAI Conference on Artificial Intelligence
7.
8.
Zurück zum Zitat Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
9.
Zurück zum Zitat Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018) Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
10.
Zurück zum Zitat Swarup, J., Sreedevi, I.: DWT based historical image enhancement technique using adaptive gamma correction. J. Algebr. Stat. 13 Swarup, J., Sreedevi, I.: DWT based historical image enhancement technique using adaptive gamma correction. J. Algebr. Stat. 13
Metadaten
Titel
A Novel Approach to Image Restoration and Image Enhancement
verfasst von
Divya Singh
Bhawna Upadhayay
Pradeep Gupta
Sonam Gupta
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_55