Skip to main content

06.09.2024 | Research

A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets

verfasst von: Ghous Ali, Nimra Lateef, Muhammad Usman Zia, Tehseen Abbas

Erschienen in: Cognitive Computation

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Autism spectrum disorders (ASDs) pose complex challenges, characterized by atypical behaviors, sensory sensitivities, and difficulties in social interaction. Despite extensive research, their exact causes remain elusive, indicating a multifactorial interplay of genetic, environmental, and neurological factors. This complexity calls for innovative approaches to ASD understanding and management. Motivated by the need to address the nuanced and uncertain nature of ASD-related data, in this study, we introduce a novel hybrid model called rough spherical fuzzy bipolar soft sets (RSFBSSs) by integrating rough sets, spherical fuzzy sets, and bipolar soft sets, which accommodates imprecision inherent in clinical assessments. We build upon foundational concepts of RSFBSS theory, developing a comprehensive algorithm for uncertain multiple attribute decision-making (MADM). Leveraging this framework, we aim to assess ASD symptom severity in pediatric populations, considering diverse contributing factors to ASD pathogenesis. The RSFBSSs offer advantages over existing methodologies, providing a robust framework for handling complex ASD data. The algorithmic framework facilitates accurate and individualized assessments of ASD symptomatology. To validate our model’s efficacy, we conduct a comparative analysis with preexisting hybrid models, employing quantitative metrics and qualitative evaluations. Through this comprehensive evaluation, we demonstrate the superior performance and versatility of RSFBSSs, offering promising avenues for advancing ASD management.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aguiar GA, Fernández DM, Reyes OG, Fonticiella YH. Diagnosis in children with autism spectrum disorders: their development in text comprehension. Revista de Ciencias Médicas de Pinar del Río. 2016;20(6):729–37. Aguiar GA, Fernández DM, Reyes OG, Fonticiella YH. Diagnosis in children with autism spectrum disorders: their development in text comprehension. Revista de Ciencias Médicas de Pinar del Río. 2016;20(6):729–37.
2.
Zurück zum Zitat Ahmmad J, Mahmood T, Chinram R, Iampan A. Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making. AIMS Mathematics. 2021;6(7):7798–833.MathSciNetCrossRef Ahmmad J, Mahmood T, Chinram R, Iampan A. Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making. AIMS Mathematics. 2021;6(7):7798–833.MathSciNetCrossRef
3.
Zurück zum Zitat Akram M, Ali G. Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granular Computing. 2020;5:1–15.CrossRef Akram M, Ali G. Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granular Computing. 2020;5:1–15.CrossRef
4.
Zurück zum Zitat Akram M, Ali G, Shabir M. A hybrid decision-making framework using rough mF bipolar soft environment. Granular Computing. 2021;6:539–55.CrossRef Akram M, Ali G, Shabir M. A hybrid decision-making framework using rough mF bipolar soft environment. Granular Computing. 2021;6:539–55.CrossRef
5.
Zurück zum Zitat Akram M, Zahid K, Kahraman C. Integrated outranking techniques based on spherical fuzzy information for the digitalization of transportation system. Applied Soft Computing. 2023;134:109992. Akram M, Zahid K, Kahraman C. Integrated outranking techniques based on spherical fuzzy information for the digitalization of transportation system. Applied Soft Computing. 2023;134:109992.
6.
Zurück zum Zitat Albahri AS, Zaidan AA, AlSattar HA, Hamid RA, Albahri OS, Qahtan S, Alamoodi AH. Towards physician’s experience: development of machine learning model for the diagnosis of autism spectrum disorders based on complex T-spherical fuzzy-weighted zero-inconsistency method. Computational Intelligence. 2023;39(2):225–57.CrossRef Albahri AS, Zaidan AA, AlSattar HA, Hamid RA, Albahri OS, Qahtan S, Alamoodi AH. Towards physician’s experience: development of machine learning model for the diagnosis of autism spectrum disorders based on complex T-spherical fuzzy-weighted zero-inconsistency method. Computational Intelligence. 2023;39(2):225–57.CrossRef
8.
Zurück zum Zitat Ali G, Abidin MZU, Xin Q, Tawfiq FM. Ranking of downstream fish passage designs for a hydroelectric project under spherical fuzzy bipolar soft framework. Symmetry. 2022;14(10):2141.CrossRef Ali G, Abidin MZU, Xin Q, Tawfiq FM. Ranking of downstream fish passage designs for a hydroelectric project under spherical fuzzy bipolar soft framework. Symmetry. 2022;14(10):2141.CrossRef
9.
Zurück zum Zitat Ali G, Alolaiyan H, Pamučar D, Asif M, Lateef N. A novel MADM framework under q-rung orthopair fuzzy bipolar soft sets. Mathematics. 2021;9(17):2163.CrossRef Ali G, Alolaiyan H, Pamučar D, Asif M, Lateef N. A novel MADM framework under q-rung orthopair fuzzy bipolar soft sets. Mathematics. 2021;9(17):2163.CrossRef
10.
Zurück zum Zitat Ali G, Ansari MN. Multiattribute decision-making under Fermatean fuzzy bipolar soft framework. Granular Computing. 2022;7(2):337–52.CrossRef Ali G, Ansari MN. Multiattribute decision-making under Fermatean fuzzy bipolar soft framework. Granular Computing. 2022;7(2):337–52.CrossRef
11.
Zurück zum Zitat Ashraf S, Abdullah S, Mahmood T, Ghani F, Mahmood T. Spherical fuzzy sets and their applications in multi-attribute decision making problems. Journal of Intelligent and Fuzzy Systems. 2019;36(3):2829–44.CrossRef Ashraf S, Abdullah S, Mahmood T, Ghani F, Mahmood T. Spherical fuzzy sets and their applications in multi-attribute decision making problems. Journal of Intelligent and Fuzzy Systems. 2019;36(3):2829–44.CrossRef
13.
Zurück zum Zitat Babitha KV, Sunil J. Soft set relations and functions. Computers and Mathematics with Applications. 2010;60(7):1840–9.MathSciNetCrossRef Babitha KV, Sunil J. Soft set relations and functions. Computers and Mathematics with Applications. 2010;60(7):1840–9.MathSciNetCrossRef
14.
Zurück zum Zitat Basri MAFA, Ismail WSW, Nor NK, Tohit NM, Ahmad MN, Aun NSM, Daud TIM. Validation of key components in designing a social skills training content using virtual reality for high functioning autism youth-a fuzzy Delphi method. PloS One. 2024;19(4). Basri MAFA, Ismail WSW, Nor NK, Tohit NM, Ahmad MN, Aun NSM, Daud TIM. Validation of key components in designing a social skills training content using virtual reality for high functioning autism youth-a fuzzy Delphi method. PloS One. 2024;19(4).
15.
Zurück zum Zitat Cuong BC. Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems with applications. Institute of Mathematics, Hanoi. 2013 Cuong BC. Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems with applications. Institute of Mathematics, Hanoi. 2013
16.
Zurück zum Zitat Cuong BC, Kreinovich V. Picture fuzzy sets. Journal of Computer Science and Cybernetics. 2014;30(4):409–20. Cuong BC, Kreinovich V. Picture fuzzy sets. Journal of Computer Science and Cybernetics. 2014;30(4):409–20.
17.
Zurück zum Zitat Gámez-Granados JC, Esteban A, Rodriguez-Lozano FJ, Zafra A. An algorithm based on fuzzy ordinal classification to predict students’ academic performance. it Applied Intelligence. 2023;53:27537-27559. Gámez-Granados JC, Esteban A, Rodriguez-Lozano FJ, Zafra A. An algorithm based on fuzzy ordinal classification to predict students’ academic performance. it Applied Intelligence. 2023;53:27537-27559.
18.
Zurück zum Zitat Garg H, Arora R. A nonlinear-programming methodology for multi-attribute decision-making problem with interval-valued intuitionistic fuzzy soft sets information. Applied Intelligence. 2018;48:2031–46.CrossRef Garg H, Arora R. A nonlinear-programming methodology for multi-attribute decision-making problem with interval-valued intuitionistic fuzzy soft sets information. Applied Intelligence. 2018;48:2031–46.CrossRef
20.
Zurück zum Zitat Gündoğdu FK, Kahraman C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent and Fuzzy Systems. 2019;36(1):337–52.CrossRef Gündoğdu FK, Kahraman C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent and Fuzzy Systems. 2019;36(1):337–52.CrossRef
22.
Zurück zum Zitat Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough sets: a tutorial. Rough fuzzy hybridization: A new trend in decision-making; 1999. p. 3–98. Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough sets: a tutorial. Rough fuzzy hybridization: A new trend in decision-making; 1999. p. 3–98.
23.
Zurück zum Zitat Kshirsagar PP, Surve AR, Pujari SD. Identification of autism spectrum disorder using machine learning and deep learning techniques. In Intelligent Solutions for Cognitive Disorders 2024 (pp. 87-98). IGI Global. Kshirsagar PP, Surve AR, Pujari SD. Identification of autism spectrum disorder using machine learning and deep learning techniques. In Intelligent Solutions for Cognitive Disorders 2024 (pp. 87-98). IGI Global.
24.
Zurück zum Zitat Levy SE, DS M, Schultz RT. Autism. Lancet. 2009;374(9701):1627-1638. Levy SE, DS M, Schultz RT. Autism. Lancet. 2009;374(9701):1627-1638.
25.
Zurück zum Zitat Mahmood T, Ullah K, Khan Q, Jan N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Computing and Applications. 2019;31:7041–53.CrossRef Mahmood T, Ullah K, Khan Q, Jan N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Computing and Applications. 2019;31:7041–53.CrossRef
26.
Zurück zum Zitat Maji PK, Biswas R, Roy AR. Soft set theory. Computers and Mathematics with Applications. 2003;45(4–5):555–62.MathSciNetCrossRef Maji PK, Biswas R, Roy AR. Soft set theory. Computers and Mathematics with Applications. 2003;45(4–5):555–62.MathSciNetCrossRef
27.
Zurück zum Zitat Malik N, Shabir M. Rough fuzzy bipolar soft sets and application in decision-making problems. Soft Computing. 2019;23:1603–14.CrossRef Malik N, Shabir M. Rough fuzzy bipolar soft sets and application in decision-making problems. Soft Computing. 2019;23:1603–14.CrossRef
28.
Zurück zum Zitat Mardani A, Hooker RE, Ozkul S, Yifan S, Nilashi M, Sabzi HZ, Fei GC. Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: a review of three decades of research with recent developments. Expert Systems with Applications. 2019;137:202–31.CrossRef Mardani A, Hooker RE, Ozkul S, Yifan S, Nilashi M, Sabzi HZ, Fei GC. Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: a review of three decades of research with recent developments. Expert Systems with Applications. 2019;137:202–31.CrossRef
29.
Zurück zum Zitat Molodtsov D. Soft set theory-first results. Computers and Mathematics with Applications. 1999;37(4–5):9–31.MathSciNet Molodtsov D. Soft set theory-first results. Computers and Mathematics with Applications. 1999;37(4–5):9–31.MathSciNet
30.
Zurück zum Zitat Mythili MS, Shanavas AM. A study on autism spectrum disorders using classification techniques. International Journal of Soft Computing and Engineering. 2014;4(5):88–91. Mythili MS, Shanavas AM. A study on autism spectrum disorders using classification techniques. International Journal of Soft Computing and Engineering. 2014;4(5):88–91.
31.
Zurück zum Zitat Naz M, Shabir M. On fuzzy bipolar soft sets, their algebraic structures and applications. Journal of Intelligent and Fuzzy Systems. 2014;26(4):1645–56.MathSciNetCrossRef Naz M, Shabir M. On fuzzy bipolar soft sets, their algebraic structures and applications. Journal of Intelligent and Fuzzy Systems. 2014;26(4):1645–56.MathSciNetCrossRef
32.
Zurück zum Zitat Paik B, Mondal SK. Scoring rule and its application in intuitionistic fuzzy parameterized soft set-based decision-making problem. Journal of Ambient Intelligence and Humanized Computing. 2023;14(10):14209–24.CrossRef Paik B, Mondal SK. Scoring rule and its application in intuitionistic fuzzy parameterized soft set-based decision-making problem. Journal of Ambient Intelligence and Humanized Computing. 2023;14(10):14209–24.CrossRef
33.
Zurück zum Zitat Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko W. Rough sets. Communications of the ACM. 1995;38(11):88–95.CrossRef Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko W. Rough sets. Communications of the ACM. 1995;38(11):88–95.CrossRef
34.
35.
Zurück zum Zitat Perveen PAF, Sunil JJ, Babitha KV, Garg H. Spherical fuzzy soft sets and its applications in decision-making problems. Journal of Intelligent and Fuzzy Systems. 2019;37(6):8237–50. Perveen PAF, Sunil JJ, Babitha KV, Garg H. Spherical fuzzy soft sets and its applications in decision-making problems. Journal of Intelligent and Fuzzy Systems. 2019;37(6):8237–50.
36.
Zurück zum Zitat Randolph-Gips M, Srinivasan P. Modeling autism: a systems biology approach. Journal of Clinical Bioinformatics. 2012;2:1–15.CrossRef Randolph-Gips M, Srinivasan P. Modeling autism: a systems biology approach. Journal of Clinical Bioinformatics. 2012;2:1–15.CrossRef
37.
Zurück zum Zitat Salgado LNR, Argilagos MER, Garrido AS, Herrera ARV, Al-Subhi SHS. Model for the diagnosis of autism based on neutrosophic cognitive maps. Neutrosophic Sets and Systems. 2021;44:125–32. Salgado LNR, Argilagos MER, Garrido AS, Herrera ARV, Al-Subhi SHS. Model for the diagnosis of autism based on neutrosophic cognitive maps. Neutrosophic Sets and Systems. 2021;44:125–32.
40.
Zurück zum Zitat Yager RR. Pythagorean fuzzy subsets. 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). 2013;57-61. Yager RR. Pythagorean fuzzy subsets. 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). 2013;57-61.
Metadaten
Titel
A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets
verfasst von
Ghous Ali
Nimra Lateef
Muhammad Usman Zia
Tehseen Abbas
Publikationsdatum
06.09.2024
Verlag
Springer US
Erschienen in
Cognitive Computation
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10349-2