Skip to main content
Erschienen in: Quantum Information Processing 10/2020

01.10.2020

A novel coherence-based quantum steganalysis protocol

verfasst von: Zhiguo Qu, Yiming Huang, Min Zheng

Erschienen in: Quantum Information Processing | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quantum steganalysis faces more challenges than classical steganalysis owing to the support of quantum mechanical principles such as Heisenberg uncertainty principle and non-cloning theorem. In this paper, a novel quantum steganalysis protocol based on pure state is proposed, which adheres to the fundamental fact that classical steganography tends to change the probability distribution of the carrier, and the physical properties that the unknown quantum state discrimination process is sensitive to the distribution in quantum state discrimination. After utilizing accurate calculation on the geometric coherence and 1/2-affinity coherence to obtain the probability that the transmitted quantum states can be correctly discriminated, effective detection on covert communication can be achieved by comparing the detected distribution with theoretical distribution. Meanwhile, steganographic detection rate and false alarm rate are introduced as two significant performance evaluation parameters of quantum steganalysis. In this paper, the quantum steganalysis and performance evaluation targeting the BB84-based quantum steganography proposed by Martin are given in detail. The geometric coherence and 1/2-affinity coherence change substantially when the steganographic embedding rate is above 0.2, and a high steganographic detection rate and a low false alarm rate can be obtained according to the proposed protocol. Besides, the impact on QKD efficiency can be controlled by adjusting the detection rate or adopting sampling detection strategy. It proves that the proposed protocol has a satisfactory quantum steganalysis performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86(25), 5807 (2001)ADSCrossRef Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86(25), 5807 (2001)ADSCrossRef
2.
3.
Zurück zum Zitat Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)ADSCrossRef Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)ADSCrossRef
4.
Zurück zum Zitat Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291(3), 813–843 (2009)ADSMathSciNetMATHCrossRef Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291(3), 813–843 (2009)ADSMathSciNetMATHCrossRef
5.
Zurück zum Zitat El Allati, A., Medeni, M.O., Hassouni, Y.: Quantum steganography via Greenberger–Horne–Zeilinger GHZ4 state. Commun. Theor. Phys. 57(4), 577–582 (2012)ADSMathSciNetMATHCrossRef El Allati, A., Medeni, M.O., Hassouni, Y.: Quantum steganography via Greenberger–Horne–Zeilinger GHZ4 state. Commun. Theor. Phys. 57(4), 577–582 (2012)ADSMathSciNetMATHCrossRef
6.
Zurück zum Zitat Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)MATHCrossRef Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)MATHCrossRef
7.
Zurück zum Zitat Qu, Z.G., Zhu, T.C., Wang, J.W., Wang, X.J.: A novel quantum stegonagraphy based on brown states. CMC: Comput. Mater. Contin. 56(1), 47–59 (2018) Qu, Z.G., Zhu, T.C., Wang, J.W., Wang, X.J.: A novel quantum stegonagraphy based on brown states. CMC: Comput. Mater. Contin. 56(1), 47–59 (2018)
8.
Zurück zum Zitat Qu, Z.G., Jiang, L.M., Sun, L., Wang, M.M., Wang, X.J.: Continuous variable quantum steganography protocol based on quantum identity. Math. Biosci. Eng. 16(5), 4182–4195 (2019)MathSciNetCrossRef Qu, Z.G., Jiang, L.M., Sun, L., Wang, M.M., Wang, X.J.: Continuous variable quantum steganography protocol based on quantum identity. Math. Biosci. Eng. 16(5), 4182–4195 (2019)MathSciNetCrossRef
9.
Zurück zum Zitat Qu, Z.G., Wu, S.Y., Liu, W.J., Wang, X.J.: Analysis and improvement of steganography protocol based on bell states in noise environment. CMC: Comput. Mater. Contin. 59(2), 607–624 (2019) Qu, Z.G., Wu, S.Y., Liu, W.J., Wang, X.J.: Analysis and improvement of steganography protocol based on bell states in noise environment. CMC: Comput. Mater. Contin. 59(2), 607–624 (2019)
11.
Zurück zum Zitat Martin, K.: Steganographic Communication with Quantum Information. In: Proceeding of the 9th International Conference on Information Hiding, LNCS 4567, pp. 32–49 (2007) Martin, K.: Steganographic Communication with Quantum Information. In: Proceeding of the 9th International Conference on Information Hiding, LNCS 4567, pp. 32–49 (2007)
12.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, vol. 175, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, vol. 175, pp. 175–179 (1984)
13.
Zurück zum Zitat Liao, X., Wen, Q.Y., Sun, Y., Zhang, J.: Multi-party covert communication with steganography and quantum secret sharing. J. Syst. Softw. 83(10), 1801–1804 (2010)CrossRef Liao, X., Wen, Q.Y., Sun, Y., Zhang, J.: Multi-party covert communication with steganography and quantum secret sharing. J. Syst. Softw. 83(10), 1801–1804 (2010)CrossRef
14.
Zurück zum Zitat Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782–4786 (2010)ADSCrossRef Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782–4786 (2010)ADSCrossRef
15.
Zurück zum Zitat Qu, Z.G., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Quantum steganography with large payload based on entanglement swapping of \(\phi \)-type entangled states. Opt. Commun. 284(7), 2075–2082 (2011)ADS Qu, Z.G., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Quantum steganography with large payload based on entanglement swapping of \(\phi \)-type entangled states. Opt. Commun. 284(7), 2075–2082 (2011)ADS
16.
Zurück zum Zitat Xu, S.J., Cheng, X.B., Niu, X.X., Yang, Y.X.: A Novel quantum covert channel protocol based on any quantum secure direct communication scheme. Commun. Theor. Phys. 59(5), 31–37 (2013) Xu, S.J., Cheng, X.B., Niu, X.X., Yang, Y.X.: A Novel quantum covert channel protocol based on any quantum secure direct communication scheme. Commun. Theor. Phys. 59(5), 31–37 (2013)
17.
Zurück zum Zitat Mihara, T.: Quantum steganography using prior entanglement. Phys. Lett. A 379(12–13), 952–955 (2015)MATHCrossRef Mihara, T.: Quantum steganography using prior entanglement. Phys. Lett. A 379(12–13), 952–955 (2015)MATHCrossRef
19.
Zurück zum Zitat Qu, Z.G., Wu, S.Y., Wang, M.M., Sun, L., Wang, X.J.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(306), 1–25 (2017)MathSciNetMATH Qu, Z.G., Wu, S.Y., Wang, M.M., Sun, L., Wang, X.J.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(306), 1–25 (2017)MathSciNetMATH
20.
Zurück zum Zitat Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)MathSciNetMATHCrossRef Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Mogos, G.: Stego quantum algorithm. In: International Symposium on Computer Science and its Applications, pp. 187–190 (2008) Mogos, G.: Stego quantum algorithm. In: International Symposium on Computer Science and its Applications, pp. 187–190 (2008)
22.
Zurück zum Zitat Mogos, G.: A quantum way to data hiding. Int. J. Multimed. Ubiquitous Eng. 4(2), 13–20 (2009) Mogos, G.: A quantum way to data hiding. Int. J. Multimed. Ubiquitous Eng. 4(2), 13–20 (2009)
23.
Zurück zum Zitat Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)MATHCrossRef Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)MATHCrossRef
24.
Zurück zum Zitat Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 242–270 (2017)ADSMathSciNetMATHCrossRef Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 242–270 (2017)ADSMathSciNetMATHCrossRef
25.
Zurück zum Zitat Luo, G.F., Zhou, R.G., Mao, Y.L.: Two-level information hiding for quantum images using optimal LSB. Quantum Inf. Process. 18(10), 297 (2019)ADSMathSciNetCrossRef Luo, G.F., Zhou, R.G., Mao, Y.L.: Two-level information hiding for quantum images using optimal LSB. Quantum Inf. Process. 18(10), 297 (2019)ADSMathSciNetCrossRef
26.
Zurück zum Zitat Qu, Z.G., Li, Z.Y., Xu, G., Wu, S.Y., Wang, X.J.: Quantum image steganography protocol based on quantum image expansion and Grover search algorithm. IEEE Access. 7, 50849–50857 (2019)CrossRef Qu, Z.G., Li, Z.Y., Xu, G., Wu, S.Y., Wang, X.J.: Quantum image steganography protocol based on quantum image expansion and Grover search algorithm. IEEE Access. 7, 50849–50857 (2019)CrossRef
27.
Zurück zum Zitat Hu, W.W., Zhou, R.G., Liu, X.A., Luo, J., Luo, G.F.: Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf. Process. 19(5), 1–28 (2019)MathSciNet Hu, W.W., Zhou, R.G., Liu, X.A., Luo, J., Luo, G.F.: Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf. Process. 19(5), 1–28 (2019)MathSciNet
28.
Zurück zum Zitat Qu, Z.G., Wen, C.Z., Wang, X.J.: Matrix coding-based quantum image steganography algorithm. IEEE Access. 7, 35684–35698 (2019)CrossRef Qu, Z.G., Wen, C.Z., Wang, X.J.: Matrix coding-based quantum image steganography algorithm. IEEE Access. 7, 35684–35698 (2019)CrossRef
29.
Zurück zum Zitat Luo, G.F., Zhou, R.G., Hu, W.W.: Efficient quantum steganography scheme using inverted pattern approach. Quantum Inf. Process. 18(7), 222 (2019)ADSMathSciNetCrossRef Luo, G.F., Zhou, R.G., Hu, W.W.: Efficient quantum steganography scheme using inverted pattern approach. Quantum Inf. Process. 18(7), 222 (2019)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Luo, J., Zhou, R.G., Hu, W.W., Luo, G.F.: Detection of steganography in quantum gray scale images. Quantum Inf. Process. 19(5), 1–17 (2020)ADSMathSciNetCrossRef Luo, J., Zhou, R.G., Hu, W.W., Luo, G.F.: Detection of steganography in quantum gray scale images. Quantum Inf. Process. 19(5), 1–17 (2020)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Chaharlang, J., Mosleh, M., Heikalabad, S.R.: A novel quantum steganography-Steganalysis system for audio signals. Multimed. Tools Appl. 79, 17551–17577 (2020)CrossRef Chaharlang, J., Mosleh, M., Heikalabad, S.R.: A novel quantum steganography-Steganalysis system for audio signals. Multimed. Tools Appl. 79, 17551–17577 (2020)CrossRef
32.
Zurück zum Zitat Chaharlang, J., Mosleh, M., Heikalabad, S.R.: A novel quantum audio steganography–steganalysis approach using LSFQ-based embedding and QKNN-based classifier. Circ. Syst. Signal Process. 39, 3925–3957 (2020)CrossRef Chaharlang, J., Mosleh, M., Heikalabad, S.R.: A novel quantum audio steganography–steganalysis approach using LSFQ-based embedding and QKNN-based classifier. Circ. Syst. Signal Process. 39, 3925–3957 (2020)CrossRef
33.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)
35.
Zurück zum Zitat Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)ADSCrossRef Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)ADSCrossRef
36.
Zurück zum Zitat Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)ADSMathSciNetCrossRef Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98(3), 032324 (2018)ADSCrossRef Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98(3), 032324 (2018)ADSCrossRef
38.
Zurück zum Zitat Zhang, H.J., Chen, B., Li, M., Fei, S.M., Long, G.L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67(2), 166–170 (2017)ADSMATHCrossRef Zhang, H.J., Chen, B., Li, M., Fei, S.M., Long, G.L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67(2), 166–170 (2017)ADSMATHCrossRef
39.
Zurück zum Zitat Belavkin, V.P.: Optimal multiple quantum statistical hypothesis testing. Stoch.: Int. J. Probab. Stoch. Process. 1(1–4), 315–345 (1975)MathSciNetMATHCrossRef Belavkin, V.P.: Optimal multiple quantum statistical hypothesis testing. Stoch.: Int. J. Probab. Stoch. Process. 1(1–4), 315–345 (1975)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Holevo, A.S.: On asymptotically optimal hypotheses testing in quantum statistics. Teor. Veroyatnostei Primen. 23(2), 429–432 (1978)MathSciNetMATH Holevo, A.S.: On asymptotically optimal hypotheses testing in quantum statistics. Teor. Veroyatnostei Primen. 23(2), 429–432 (1978)MathSciNetMATH
41.
Zurück zum Zitat Eldar, Y.C., Forney, G.D.: On quantum detection and the square-root measurement. IEEE Trans. Inf. Theory 47(3), 858–872 (2001)MathSciNetMATHCrossRef Eldar, Y.C., Forney, G.D.: On quantum detection and the square-root measurement. IEEE Trans. Inf. Theory 47(3), 858–872 (2001)MathSciNetMATHCrossRef
43.
Metadaten
Titel
A novel coherence-based quantum steganalysis protocol
verfasst von
Zhiguo Qu
Yiming Huang
Min Zheng
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02868-2

Weitere Artikel der Ausgabe 10/2020

Quantum Information Processing 10/2020 Zur Ausgabe

Neuer Inhalt