Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.05.2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems | Ausgabe 9/2019

Neural Computing and Applications 9/2019

A novel collaborative filtering algorithm of machine learning by integrating restricted Boltzmann machine and trust information

Zeitschrift:
Neural Computing and Applications > Ausgabe 9/2019
Autoren:
Xiaojun Wu, Xiaojie Yuan, Chunyan Duan, Jing Wu
Wichtige Hinweise
This work was supported by the National Natural Science Foundation of China (No. 71701153), the international Postdoctoral Exchange Fellowship Program (No. 20160087), and the Fundamental Research Funds for the Central Universities of China.

Abstract

With rapidly increasing information on the Internet, it can be more difficult and time consuming to find what one really wants, especially in e-commerce. Systems and methods based on machine learning are emerging to generate recommendations based on various factors. Existing methods face issues such as data sparsity and cold starts. To alleviate their effects, this paper proposes a novel social recommendation method combined with a restricted Boltzmann machine model and trust information to improve the performance of recommendations. Specifically, users’ preferences and ratings of items are used as data inputs in a restricted Boltzmann machine model to learn the probability distribution. In addition, user similarities are calculated by weighting user similarity and user trust values derived from trust information (i.e., trust statements explicitly given by users). Predictions are made by integrating user-history ratings and ratings of trusted users from a well-trained restricted Boltzmann machine model. Experimental results show that the proposed method has better prediction accuracy than other common collaborative filtering algorithms of machine learning.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Intelligent learning system based on personalized recommendation technology

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Uncertainties in the friction moment of rolling bearings based on the Bayesian theory and robust theory

Premium Partner

    Bildnachweise