Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.11.2018 | Computer aided Medical Diagnosis

A novel deep learning-based multi-model ensemble method for the prediction of neuromuscular disorders

Zeitschrift:
Neural Computing and Applications
Autoren:
Aditya Khamparia, Aman Singh, Divya Anand, Deepak Gupta, Ashish Khanna, N. Arun Kumar, Joseph Tan
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Neuromuscular disorder is a complex progressive health problem which results in muscle weakness and fatigue. In recent years, with emergence and development of machine learning- and sequencing-driven technologies, the prediction of neuromuscular disorders could be made on the basis of gene expression for accurate diagnosis of disease. The intent is to correctly distinguish the patients affected from neuromuscular disorder from the healthy one with the help of various classification methods used in machine learning. In this paper, we proposed a novel feature selection method which applies deep learning method for grouping the outputs generated through various classifiers. The feature selection is performed on the basis of integrated Bhattacharya coefficient and genetic algorithm (GA) where fitness is computed on the basis of ensemble outputs of various classifiers which is performed using deep learning methods. The Bhattacharya coefficient computed the most effective gene subset; then, the most discriminative gene subset will be formulated using GA. The proposed integrated deep learning multi-model ensemble method was applied on two commercially available neuromuscular disorder datasets. The obtained results encouraged that the proposed integrated approach enhances the prediction accuracy of neuromuscular disorders as compared with different datasets and other classifier algorithms. The proposed deep learning-driven ensemble method provides more accurate and effective results for neuromuscular disorder prediction and classification with the help of distinguished classifiers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise