Skip to main content
Erschienen in:

04.07.2023

A novel design of graphene field-effect transistor-based out-phasing power amplifier

verfasst von: Mohsen Pooya, Mohammad Bagher Tavakoli, Farbod Setoudeh, Ashkan Horri, Ali Safari

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene transistors are promising candidates for nano-circuits in telecommunication bands due to their high amplification bandwidth, extremely high carrier mobility, high saturation velocity, and the good electric conductance of the graphene channel. In this study, the parameters of a compact model are implemented in the Verilog-A language. An out-phasing power amplifier is designed using microstrip input/output matching, bias network, and quarter-wave Chireix divider/combiner over the frequency range of 2–4 GHz. The simulation results of graphene out-phasing power amplifier in advanced design system software show an increase of about 14 dB in the output gain, an intermodulation distortion (IMD) suppression of better than − 21.8 dBc, and a DC power consumption of 20 mW. In addition, the figures of merit of the proposed design show improvements in terms of gain, IMD, power consumption, and input/output return loss compared to other graphene amplifiers at different frequencies. A comparison of our design with some other amplifiers in various technologies at different frequencies shows a good gain and better IMD suppression in our design. Moreover, the power consumption, input/output return loss, and bandwidth of our strategy are relatively improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Safari, M.D.A., Tavakoli, M.B.: Distributed amplifier based on monolayer graphene field effect transistor. J. Circuits Syst. Comput. 28, 1950231 (2019)CrossRef Safari, M.D.A., Tavakoli, M.B.: Distributed amplifier based on monolayer graphene field effect transistor. J. Circuits Syst. Comput. 28, 1950231 (2019)CrossRef
2.
Zurück zum Zitat Hanna, T.N.D., Frégonèse, S., Khenissa, M.S., Pallecchi, E., Happy, H.: 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid-State Electron. 127, 26 (2016)CrossRef Hanna, T.N.D., Frégonèse, S., Khenissa, M.S., Pallecchi, E., Happy, H.: 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid-State Electron. 127, 26 (2016)CrossRef
3.
Zurück zum Zitat Peng, P., Wang, Z., Wei, Z., Tian, Z., Li, M., Ren, L., Fu, Y.: Radio-frequency power amplifier based on CVD graphene field-effect transistor. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2019) Peng, P., Wang, Z., Wei, Z., Tian, Z., Li, M., Ren, L., Fu, Y.: Radio-frequency power amplifier based on CVD graphene field-effect transistor. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2019)
4.
Zurück zum Zitat Andersson, M.A., Habibpour, O., Vukusic, J., Stake, J.: 10 dB small-signal graphene FET amplifier. Electron. Lett. 48, 861 (2012)CrossRef Andersson, M.A., Habibpour, O., Vukusic, J., Stake, J.: 10 dB small-signal graphene FET amplifier. Electron. Lett. 48, 861 (2012)CrossRef
5.
Zurück zum Zitat Sang, L., Xu, Y., Wu, Y., Chen, R.: Device and compact circuit-level modeling of graphene field-effect transistors for RF and microwave applications. IEEE Trans. Circuits Syst. I Reg. Pap. 65, 2559 (2018)CrossRef Sang, L., Xu, Y., Wu, Y., Chen, R.: Device and compact circuit-level modeling of graphene field-effect transistors for RF and microwave applications. IEEE Trans. Circuits Syst. I Reg. Pap. 65, 2559 (2018)CrossRef
6.
Zurück zum Zitat Aguirre-Morales, J.D., Frégonèse, S., Dwivedi, A.D.D., Zimmer, T.: Towards amplifier design with a SiC graphene field-effect transistor. In: IEEE International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (2015) Aguirre-Morales, J.D., Frégonèse, S., Dwivedi, A.D.D., Zimmer, T.: Towards amplifier design with a SiC graphene field-effect transistor. In: IEEE International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (2015)
7.
Zurück zum Zitat Lee, J., Seo, D.H., Shin, H., Park, S., Chung, H.-J.: Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Current Appl. Phys. 14, 1057 (2014)CrossRef Lee, J., Seo, D.H., Shin, H., Park, S., Chung, H.-J.: Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Current Appl. Phys. 14, 1057 (2014)CrossRef
8.
Zurück zum Zitat Yu, C., He, Z.Z., Liu, Q.B., Song, X.B., Xu, P., Han, T.T., Li, J., Feng, Z.H., Cai, S.J.: Graphene amplifier MMIC on SiC substrate. IEEE Electron. Dev. Lett. 37, 684 (2015)CrossRef Yu, C., He, Z.Z., Liu, Q.B., Song, X.B., Xu, P., Han, T.T., Li, J., Feng, Z.H., Cai, S.J.: Graphene amplifier MMIC on SiC substrate. IEEE Electron. Dev. Lett. 37, 684 (2015)CrossRef
9.
Zurück zum Zitat Petrone, N., Meric, I., Hone, J., Shepard. K.L.: Graphene field-effect transistors with gigahertz- frequency power gain on flexible substrates. Nano Lett. 13(1), 121–125 (2013)CrossRef Petrone, N., Meric, I., Hone, J., Shepard. K.L.: Graphene field-effect transistors with gigahertz- frequency power gain on flexible substrates. Nano Lett. 13(1), 121–125 (2013)CrossRef
10.
Zurück zum Zitat Wang, Z., et al.: Stability of Radio-Frequency Graphene Field-Effect Transistors in Ambient. IOP Ebooks (2019)CrossRef Wang, Z., et al.: Stability of Radio-Frequency Graphene Field-Effect Transistors in Ambient. IOP Ebooks (2019)CrossRef
11.
Zurück zum Zitat Feijoo, P.C., et al.: Short channel effects in graphene-based field effect transistors targeting radio-frequency applications. 2D Materials 3, 025036 (2016)CrossRef Feijoo, P.C., et al.: Short channel effects in graphene-based field effect transistors targeting radio-frequency applications. 2D Materials 3, 025036 (2016)CrossRef
12.
Zurück zum Zitat Gorre, P., et al.: A 64 dBΩ, 25 Gb/s GFET based transimpedance amplifier with UWB resonator for optical radar detection in medical applications. Microelectron. J. 111, 105026 (2021)CrossRef Gorre, P., et al.: A 64 dBΩ, 25 Gb/s GFET based transimpedance amplifier with UWB resonator for optical radar detection in medical applications. Microelectron. J. 111, 105026 (2021)CrossRef
13.
Zurück zum Zitat Hamed, A., et al.: Integrated 10-GHz graphene FET amplifier. IEEE J. Microwaves 1, 821–826 (2021)CrossRef Hamed, A., et al.: Integrated 10-GHz graphene FET amplifier. IEEE J. Microwaves 1, 821–826 (2021)CrossRef
14.
Zurück zum Zitat Lamberti, P., et al.: Tolerance analysis of a GFET transistor for aerospace and aeronautical application. IOP Conf. Ser. Mater. Sci. Eng. 1024, 012005 (2020)CrossRef Lamberti, P., et al.: Tolerance analysis of a GFET transistor for aerospace and aeronautical application. IOP Conf. Ser. Mater. Sci. Eng. 1024, 012005 (2020)CrossRef
15.
Zurück zum Zitat Mura, M.L., et al.: Numerical evaluation of the effect of geometric tolerances on the high-frequency performance of graphene field-effect transistors. Nanomaterials 11, 3121 (2021)CrossRef Mura, M.L., et al.: Numerical evaluation of the effect of geometric tolerances on the high-frequency performance of graphene field-effect transistors. Nanomaterials 11, 3121 (2021)CrossRef
16.
Zurück zum Zitat Safari, Ali, Dousti, M., Tavakoli, M.B.: Monolayer graphene field effect transistor based operational amplifier. J. Circuits Syst. Comput. 28, 1950052 (2018)CrossRef Safari, Ali, Dousti, M., Tavakoli, M.B.: Monolayer graphene field effect transistor based operational amplifier. J. Circuits Syst. Comput. 28, 1950052 (2018)CrossRef
17.
Zurück zum Zitat Lyu, H., et al.: Graphene distributed amplifiers: generating desirable gain for graphene field-effect transistors. Sci. Rep. 5, 17649 (2015)CrossRef Lyu, H., et al.: Graphene distributed amplifiers: generating desirable gain for graphene field-effect transistors. Sci. Rep. 5, 17649 (2015)CrossRef
18.
Zurück zum Zitat Vorobiev, A., et al.: Graphene field-effect transistors for millimeter wave amplifiers. In: IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019) Vorobiev, A., et al.: Graphene field-effect transistors for millimeter wave amplifiers. In: IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019)
19.
Zurück zum Zitat Yu, C., et al.: Field effect transistors and low noise amplifier MMICs of monolayer graphene. IEEE Electron Dev. Lett. 42, 268–271 (2021)CrossRef Yu, C., et al.: Field effect transistors and low noise amplifier MMICs of monolayer graphene. IEEE Electron Dev. Lett. 42, 268–271 (2021)CrossRef
20.
Zurück zum Zitat Afanasyev, P., Grebennikov, A., Farrell, R., Dooley, J.: Analysis and design of outphasing transmitter using class-E power amplifiers with shunt capacitances and shunt filters. IEEE Access 8, 208879 (2020)CrossRef Afanasyev, P., Grebennikov, A., Farrell, R., Dooley, J.: Analysis and design of outphasing transmitter using class-E power amplifiers with shunt capacitances and shunt filters. IEEE Access 8, 208879 (2020)CrossRef
21.
Zurück zum Zitat Choi, S.-E., Ahn, H., Hur, J., Kim, K.-W., Nam, I., Choi, J., Lee, O.: A Fully Integrated compact outphasing CMOS power amplifier using a parallel-combining transformer with a tuning inductor method. MDPI Electron. 9, 257 (2020)CrossRef Choi, S.-E., Ahn, H., Hur, J., Kim, K.-W., Nam, I., Choi, J., Lee, O.: A Fully Integrated compact outphasing CMOS power amplifier using a parallel-combining transformer with a tuning inductor method. MDPI Electron. 9, 257 (2020)CrossRef
22.
Zurück zum Zitat Li, M., Pang, J., Li, Y., Zhu, A.: Bandwidth enhancement of Doherty power amplifier using modified load modulation network. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 1824 (2020)CrossRef Li, M., Pang, J., Li, Y., Zhu, A.: Bandwidth enhancement of Doherty power amplifier using modified load modulation network. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 1824 (2020)CrossRef
23.
Zurück zum Zitat Liang, C., Niubó-Alemán, T., Hahn, Y., Roblin, P., Reynoso-Hernandez, J.A.: Optimal two-way hybrid Doherty-outphasing power amplifier. In: IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR) (2020) Liang, C., Niubó-Alemán, T., Hahn, Y., Roblin, P., Reynoso-Hernandez, J.A.: Optimal two-way hybrid Doherty-outphasing power amplifier. In: IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR) (2020)
24.
Zurück zum Zitat Moloudi, F., Jahanirad, H.: Broadband class-E power amplifier design using tunable output matching network. Int. J. Electron. Commun. (AEÜ). 118, 153142 (2020)CrossRef Moloudi, F., Jahanirad, H.: Broadband class-E power amplifier design using tunable output matching network. Int. J. Electron. Commun. (AEÜ). 118, 153142 (2020)CrossRef
25.
Zurück zum Zitat Ogasawara, R., Takayama, Y., Ishikawa, R., Honjo, K.: A 3.9-GHz-band outphasing power amplifier with compact combiner based on dual-power-level design for wide dynamic-range operation. In: International microwave symposium IEEE. (2020) Ogasawara, R., Takayama, Y., Ishikawa, R., Honjo, K.: A 3.9-GHz-band outphasing power amplifier with compact combiner based on dual-power-level design for wide dynamic-range operation. In: International microwave symposium IEEE. (2020)
26.
Zurück zum Zitat Gilasgar, M., Barlabé, A., Prade, L.: High-efficiency reconfigurable dual-band class-F power amplifier with harmonic control network using MEMS. IEEE Microwave Wirel. Compon. Lett. 30, 677 (2020)CrossRef Gilasgar, M., Barlabé, A., Prade, L.: High-efficiency reconfigurable dual-band class-F power amplifier with harmonic control network using MEMS. IEEE Microwave Wirel. Compon. Lett. 30, 677 (2020)CrossRef
27.
Zurück zum Zitat Lee, M.-P., Kim, S., Hong, S.-J., Kim, D.-W.: Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems. Micromachines 11, 375 (2020)CrossRef Lee, M.-P., Kim, S., Hong, S.-J., Kim, D.-W.: Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems. Micromachines 11, 375 (2020)CrossRef
28.
Zurück zum Zitat Xue, X., Wang, X., Luo, S., Li, R., Yang, J.: A design of high power Beidou L-band power amplifier. Int. Conf. Appl. Phys. Comput. 1650, 022017 (2020) Xue, X., Wang, X., Luo, S., Li, R., Yang, J.: A design of high power Beidou L-band power amplifier. Int. Conf. Appl. Phys. Comput. 1650, 022017 (2020)
29.
Zurück zum Zitat Chen, K.J., Huang, S.: AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers. Semicond. Sci. Technol. 28, 074015 (2013)CrossRef Chen, K.J., Huang, S.: AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers. Semicond. Sci. Technol. 28, 074015 (2013)CrossRef
30.
Zurück zum Zitat Cheng, Z., Zhang, M., Li, J., Liu, G.: A broadband high-efficiency Doherty power amplifier using symmetrical devices*. J. Semicond. 39, 045004 (2018)CrossRef Cheng, Z., Zhang, M., Li, J., Liu, G.: A broadband high-efficiency Doherty power amplifier using symmetrical devices*. J. Semicond. 39, 045004 (2018)CrossRef
31.
Zurück zum Zitat Azizi, H., Dehghan, M., Davanib, A., Ghasemic, F.: Design, construction and test of RF solid state power amplifier for IRANCYC-10. J. Instrum. 13, P03007 (2018)CrossRef Azizi, H., Dehghan, M., Davanib, A., Ghasemic, F.: Design, construction and test of RF solid state power amplifier for IRANCYC-10. J. Instrum. 13, P03007 (2018)CrossRef
32.
Zurück zum Zitat Hanna, T.: Contribution to the study of transmitters at millimeter frequencies on emerging and advanced technologies. PhD, Doctoral School of Physical Sciences and Engineering Doctor Specialty: Electronics, Bordeaux (2018). Available online https://tel.archives-ouvertes.fr/tel-01729094 Hanna, T.: Contribution to the study of transmitters at millimeter frequencies on emerging and advanced technologies. PhD, Doctoral School of Physical Sciences and Engineering Doctor Specialty: Electronics, Bordeaux (2018). Available online https://​tel.​archives-ouvertes.​fr/​tel-01729094
33.
Zurück zum Zitat Thiele, S.A., et al.: Modeling of graphene metal-oxidesemiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107, 094505 (2010)CrossRef Thiele, S.A., et al.: Modeling of graphene metal-oxidesemiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107, 094505 (2010)CrossRef
34.
Zurück zum Zitat Thiele, S., Schwierz, F.: Modeling of the steady state characteristics of large-area graphene fieldeffect transistors. J. Appl. Phys. 110, 034506 (2011)CrossRef Thiele, S., Schwierz, F.: Modeling of the steady state characteristics of large-area graphene fieldeffect transistors. J. Appl. Phys. 110, 034506 (2011)CrossRef
35.
Zurück zum Zitat Rodriguez, S., et al.: A comprehensive graphene FET model for circuit design. IEEE Trans. Electron Dev. 61, 1199 (2014)CrossRef Rodriguez, S., et al.: A comprehensive graphene FET model for circuit design. IEEE Trans. Electron Dev. 61, 1199 (2014)CrossRef
36.
Zurück zum Zitat Pasadas, F., et al.: Small-signal model for 2D-material based FETs targeting radio-frequency applications: the importance of considering nonreciprocal capacitances. IEEE Trans. Electron Dev. 64, 4715 (2017)CrossRef Pasadas, F., et al.: Small-signal model for 2D-material based FETs targeting radio-frequency applications: the importance of considering nonreciprocal capacitances. IEEE Trans. Electron Dev. 64, 4715 (2017)CrossRef
37.
Zurück zum Zitat Meric, I., et al.: Graphene field-effect transistors based on boron nitride gate dielectrics. Proc. IEEE 101, 1609 (2013)CrossRef Meric, I., et al.: Graphene field-effect transistors based on boron nitride gate dielectrics. Proc. IEEE 101, 1609 (2013)CrossRef
38.
Zurück zum Zitat Zhang, X., Larson, L.E., Asbeck, P.M.: Design of Linear RF Outphasing Power Amplifiers. Artech House (2003). Available online www.artechhouse.com Zhang, X., Larson, L.E., Asbeck, P.M.: Design of Linear RF Outphasing Power Amplifiers. Artech House (2003). Available online www.​artechhouse.​com
39.
Zurück zum Zitat Godoy, P.A.: Techniques for high-efficiency outphasing power amplifiers. Department of Electrical Engineering and Computer Science: Massachusetts Institute of Technology (2011) Godoy, P.A.: Techniques for high-efficiency outphasing power amplifiers. Department of Electrical Engineering and Computer Science: Massachusetts Institute of Technology (2011)
40.
Zurück zum Zitat Song, S.M., et al.: Improved drain current saturation and voltage gain in graphene-on-silicon field effect transistors. Sci. Rep. 6, 25392 (2016)CrossRef Song, S.M., et al.: Improved drain current saturation and voltage gain in graphene-on-silicon field effect transistors. Sci. Rep. 6, 25392 (2016)CrossRef
41.
Zurück zum Zitat Choi, D.-C., et al.: Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices. Appl. Surf. Sci. 427, 48 (2017)CrossRef Choi, D.-C., et al.: Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices. Appl. Surf. Sci. 427, 48 (2017)CrossRef
Metadaten
Titel
A novel design of graphene field-effect transistor-based out-phasing power amplifier
verfasst von
Mohsen Pooya
Mohammad Bagher Tavakoli
Farbod Setoudeh
Ashkan Horri
Ali Safari
Publikationsdatum
04.07.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02064-2