Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

06.07.2022

A Novel Double Threshold-Based Spectrum Sensing Technique at Low SNR Under Noise Uncertainty for Cognitive Radio Systems

verfasst von: Garima Mahendru

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cognitive Radio is a novel concept that has invoked a paradigm shift in wireless communication and promises to solve the problem of spectrum underutilization. Spectrum sensing plays a pivotal role in a cognitive radio system by detecting the vacant spectrum for establishing a communication link. For any spectrum sensing method, detection probability and error probability portray a significant part in quantifying the detection performance. At low SNR, it becomes cumbersome to differentiate noise and signal due to which sensing method loses robustness and reliability. In this paper, mathematical modeling and critical measurement of detection probabilities has been done for energy detection-based spectrum sensing at low SNR in uncertain noisy environment. A mathematical model has been proposed to compute double thresholds for reliable sensing when the observed energy is less than the uncertainty in the noise power. A novel parameter “Threshold Wall” has been formulated for optimum threshold selection to overcome sensing failure. Comparative simulation and analytical result measurements have been presented that reveals improved sensing performance.Please check inserted city is correct for affiliation 1.Noida, it is correct

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lutu, A., Perino, D., Bagnulo, M., Frias-Martinez, E., & Khangosstar, J. (2020). A characterization of the COVID-19 pandemic impact on a mobile network operator traffic. In Proceedings of the ACM internet measurement conference 2020 Oct 27 (pp. 19–33). Lutu, A., Perino, D., Bagnulo, M., Frias-Martinez, E., & Khangosstar, J. (2020). A characterization of the COVID-19 pandemic impact on a mobile network operator traffic. In Proceedings of the ACM internet measurement conference 2020 Oct 27 (pp. 19–33).
2.
Zurück zum Zitat Federal Communications Commission Spectrum Policy Task Force Report, FCC 02-155 Federal Communications Commission (2002). Federal Communications Commission Spectrum Policy Task Force Report, FCC 02-155 Federal Communications Commission (2002).
3.
Zurück zum Zitat McHenry, M. (2005). NSF spectrum occupancy measurements project summary. Tech. Rep. McHenry, M. (2005). NSF spectrum occupancy measurements project summary. Tech. Rep.
4.
Zurück zum Zitat Faruk, N., Bello, O. W., Sowande, O. A., Onidare, S. O., Muhammad, M. Y., & Ayeni, A. A. (2016). Large scale spectrum survey in rural and urban environments within the 50 MHz–6 GHz bands. Measurement, 91, 228–238.CrossRef Faruk, N., Bello, O. W., Sowande, O. A., Onidare, S. O., Muhammad, M. Y., & Ayeni, A. A. (2016). Large scale spectrum survey in rural and urban environments within the 50 MHz–6 GHz bands. Measurement, 91, 228–238.CrossRef
5.
Zurück zum Zitat Federal Communications Commission Notice of Proposed Rulemaking and Order, Facilitating Opportunities for Flexible, Efficient and Reliable Spectrum Use Employing Cognitive Radio Technologies, FCC 03-322 Federal Communications Commission (2003). Federal Communications Commission Notice of Proposed Rulemaking and Order, Facilitating Opportunities for Flexible, Efficient and Reliable Spectrum Use Employing Cognitive Radio Technologies, FCC 03-322 Federal Communications Commission (2003).
6.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6, 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6, 13–18.CrossRef
7.
Zurück zum Zitat Mitola, J. (2000). Cognitive Radio: An Integrated Architecture for Software Defined Radio, Royal Institute Technology, Stockholm, Sweden (Ph.D. Diss.). Mitola, J. (2000). Cognitive Radio: An Integrated Architecture for Software Defined Radio, Royal Institute Technology, Stockholm, Sweden (Ph.D. Diss.).
8.
Zurück zum Zitat Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. IEEE Proceedings, 97(5), 849–877.CrossRef Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. IEEE Proceedings, 97(5), 849–877.CrossRef
9.
Zurück zum Zitat Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef
10.
Zurück zum Zitat Chen, Y. (2010). Improved energy detector for random signals in Gaussian noise. IEEE Transactions on Wireless Communications, 9(2), 558–563.CrossRef Chen, Y. (2010). Improved energy detector for random signals in Gaussian noise. IEEE Transactions on Wireless Communications, 9(2), 558–563.CrossRef
11.
Zurück zum Zitat Cabric, D., Tkachenko, A., & Brodersen, R. W. (2006). Experimental study of spectrum sensing based on energy detection and netwotk cooperation. ACM Int. Workshop on Technology and Policy for Accessing Spectrum. Cabric, D., Tkachenko, A., & Brodersen, R. W. (2006). Experimental study of spectrum sensing based on energy detection and netwotk cooperation. ACM Int. Workshop on Technology and Policy for Accessing Spectrum.
12.
Zurück zum Zitat Lunden, J., Koivunen, V., Huttunen, A., & Poor, H. V. (2009). Collaborative cyclo-stationary spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing, 57(11), 4182–4195.MathSciNetCrossRef Lunden, J., Koivunen, V., Huttunen, A., & Poor, H. V. (2009). Collaborative cyclo-stationary spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing, 57(11), 4182–4195.MathSciNetCrossRef
13.
Zurück zum Zitat Yan, T., Xu, F., Wei, N., & Yang, Z. (2018). An improved cyclostationary feature detection algorithm. In International conference on computer engineering and networks (pp. 544–555). Springer. Yan, T., Xu, F., Wei, N., & Yang, Z. (2018). An improved cyclostationary feature detection algorithm. In International conference on computer engineering and networks (pp. 544–555). Springer.
14.
Zurück zum Zitat Khan, I., & Singh, P. (2014). Double threshold feature detector for cooperative spectrum sensing in cognitive radio networks. In 2014 annual IEEE India conference (INDICON) (pp. 1–5). IEEE. Khan, I., & Singh, P. (2014). Double threshold feature detector for cooperative spectrum sensing in cognitive radio networks. In 2014 annual IEEE India conference (INDICON) (pp. 1–5). IEEE.
15.
Zurück zum Zitat Salahdine, F., El Ghazi, H., Kaabouch, N., & Fihri, W.F. (2015). Matched filter detection with dynamic threshold for cognitive radio networks. In Proceedings of the international conference on wireless networks and mobile communications, Marrakech (pp. 1–6), Morocco, 20–23 October 2015. Salahdine, F., El Ghazi, H., Kaabouch, N., & Fihri, W.F. (2015). Matched filter detection with dynamic threshold for cognitive radio networks. In Proceedings of the international conference on wireless networks and mobile communications, Marrakech (pp. 1–6), Morocco, 20–23 October 2015.
17.
Zurück zum Zitat Kumar, K. S., Saravanan, R., & Muthaiah, R. (2013). Cognitive Radio spectrum sensing algorithms based on eigenvalue and covariance methods. International Journal of Engineering Technology, 5, 595–601. Kumar, K. S., Saravanan, R., & Muthaiah, R. (2013). Cognitive Radio spectrum sensing algorithms based on eigenvalue and covariance methods. International Journal of Engineering Technology, 5, 595–601.
18.
Zurück zum Zitat Zeng, Y., & Liang, Y. C. (2007). Covariance based signal detections for cognitive radio. In Proceedings of the 2007 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, Dublin, Ireland (pp. 202–207). Zeng, Y., & Liang, Y. C. (2007). Covariance based signal detections for cognitive radio. In Proceedings of the 2007 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, Dublin, Ireland (pp. 202–207).
19.
Zurück zum Zitat Balaji, V., Kabra, P., Saieesh, P., Hota, C., & Raghurama, G. (2015). Cooperative spectrum sensing in cognitive radios using perceptron learning for IEEE 802.22 WRAN. Elsevier Procedia Computing Science, 54, 14–23.CrossRef Balaji, V., Kabra, P., Saieesh, P., Hota, C., & Raghurama, G. (2015). Cooperative spectrum sensing in cognitive radios using perceptron learning for IEEE 802.22 WRAN. Elsevier Procedia Computing Science, 54, 14–23.CrossRef
20.
Zurück zum Zitat Sharma, S. K., Lagunas, E., Chatzinotas, S., & Ottersten, B. (2016). Application of compressive sensing in cognitive radio communications: A survey. IEEE Communication Survey Tutorial, 18, 1838–1860.CrossRef Sharma, S. K., Lagunas, E., Chatzinotas, S., & Ottersten, B. (2016). Application of compressive sensing in cognitive radio communications: A survey. IEEE Communication Survey Tutorial, 18, 1838–1860.CrossRef
21.
Zurück zum Zitat Salahdine, F., Kaabouch, N., & El Ghazi, H. (2016). A survey on compressive sensing techniques for cognitive radio networks. Journal of Physics Communication, 20, 61–73.CrossRef Salahdine, F., Kaabouch, N., & El Ghazi, H. (2016). A survey on compressive sensing techniques for cognitive radio networks. Journal of Physics Communication, 20, 61–73.CrossRef
22.
Zurück zum Zitat Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors., 19(1), 126.CrossRef Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors., 19(1), 126.CrossRef
23.
Zurück zum Zitat Nguyen, M. T., & Boveiri, H. R. (2020). Energy-efficient sensing in robotic networks. Measurement, 158, 107708.CrossRef Nguyen, M. T., & Boveiri, H. R. (2020). Energy-efficient sensing in robotic networks. Measurement, 158, 107708.CrossRef
24.
Zurück zum Zitat Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Surveys and Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Surveys and Tutorials, 11(1), 116–130.CrossRef
25.
Zurück zum Zitat Abdulsattar, M. A., & Hussein, Z. A. (2012). Energy detection technique for spectrum sensing in cognitive radio: A survey. International Journal of Computer Networks & Communications., 4(5), 223.CrossRef Abdulsattar, M. A., & Hussein, Z. A. (2012). Energy detection technique for spectrum sensing in cognitive radio: A survey. International Journal of Computer Networks & Communications., 4(5), 223.CrossRef
26.
Zurück zum Zitat Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Conference record of the thirty-eighth asilomar conference on signals, systems and computers (Vol. 1, pp. 772–776). Ieee. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Conference record of the thirty-eighth asilomar conference on signals, systems and computers (Vol. 1, pp. 772–776). Ieee.
27.
Zurück zum Zitat Tandra, R., & Sahai, A. (2008). SNR walls for signal detection, IEEE 1. Selection of Topics Signal Process., 2, 4–17.CrossRef Tandra, R., & Sahai, A. (2008). SNR walls for signal detection, IEEE 1. Selection of Topics Signal Process., 2, 4–17.CrossRef
28.
Zurück zum Zitat Yu, G., & Xi, W. (2012). A novel energy detection scheme based on dynamic threshold in cognitive radio systems. Journal of Computational Information Systems, 8, 2245–2252. Yu, G., & Xi, W. (2012). A novel energy detection scheme based on dynamic threshold in cognitive radio systems. Journal of Computational Information Systems, 8, 2245–2252.
29.
Zurück zum Zitat Arar, A. M., Masri, A. M., Ghannam, H. O., & Tumar, I. K. (2017). A proposed scheme for dynamic threshold versus noise uncertainty in cognitive radio networks (DTNU). Wireless Personal Communication Journal, 96, 4543–4555.CrossRef Arar, A. M., Masri, A. M., Ghannam, H. O., & Tumar, I. K. (2017). A proposed scheme for dynamic threshold versus noise uncertainty in cognitive radio networks (DTNU). Wireless Personal Communication Journal, 96, 4543–4555.CrossRef
30.
Zurück zum Zitat Xie, S., & Shen, L. (2012). Double-threshold energy detection of spectrum sensing for cognitive radio under noise uncertainty environment. In 2012 International Conference on Wireless Communications and Signal Processing (WCSP), Huangshan (pp. 1–5). Xie, S., & Shen, L. (2012). Double-threshold energy detection of spectrum sensing for cognitive radio under noise uncertainty environment. In 2012 International Conference on Wireless Communications and Signal Processing (WCSP), Huangshan (pp. 1–5).
31.
Zurück zum Zitat Verma, P., Singh, B. (2015). Simulation study of double threshold energy detection method for cognitive radios. In 2015 2nd international conference on signal processing and integrated networks (SPIN) (pp. 232–236). IEEE. Verma, P., Singh, B. (2015). Simulation study of double threshold energy detection method for cognitive radios. In 2015 2nd international conference on signal processing and integrated networks (SPIN) (pp. 232–236). IEEE.
32.
Zurück zum Zitat Liu, F., Wang, J., & Han, Y. (2013). An adaptive double thresholds scheme for spectrum sensing in cognitive radio networks. In IEEE international conference, (ICSPCC) (pp. 1–5). Liu, F., Wang, J., & Han, Y. (2013). An adaptive double thresholds scheme for spectrum sensing in cognitive radio networks. In IEEE international conference, (ICSPCC) (pp. 1–5).
33.
Zurück zum Zitat Capriglione, D., Cerro, G., Ferrigno, L., & Miele, G. (2019). Performance analysis of a two-stage spectrum sensing scheme for dynamic spectrum access in TV bands. Measurement, 135, 661–671.CrossRef Capriglione, D., Cerro, G., Ferrigno, L., & Miele, G. (2019). Performance analysis of a two-stage spectrum sensing scheme for dynamic spectrum access in TV bands. Measurement, 135, 661–671.CrossRef
35.
Zurück zum Zitat Shah, H. A., & Koo, I. (2018). Reliable machine learning based spectrum sensing in cognitive radio networks. Wireless Communications and Mobile Computing., 12, 2018. Shah, H. A., & Koo, I. (2018). Reliable machine learning based spectrum sensing in cognitive radio networks. Wireless Communications and Mobile Computing., 12, 2018.
36.
Zurück zum Zitat Liu, X., Zheng, K., Chi, K., & Zhu, Y. H. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications., 19(11), 7663–7676.CrossRef Liu, X., Zheng, K., Chi, K., & Zhu, Y. H. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications., 19(11), 7663–7676.CrossRef
39.
Zurück zum Zitat Mahendru, G., Shukla, A. K., Banerjee, P., Patnaik, L. M. (2019). Adaptive double threshold based spectrum sensing to overcome sensing failure in presence of noise uncertainty. In 2019 6th international conference on signal processing and integrated networks (SPIN) (pp. 466–471). IEEE. Mahendru, G., Shukla, A. K., Banerjee, P., Patnaik, L. M. (2019). Adaptive double threshold based spectrum sensing to overcome sensing failure in presence of noise uncertainty. In 2019 6th international conference on signal processing and integrated networks (SPIN) (pp. 466–471). IEEE.
40.
Zurück zum Zitat Rop, K. V., Langat, P. K., & Ouma, H. A. (2021). Spectrum sensing on high density cognitive radio vehicular ad hoc network. Journal of Communications., 16(7), 259–266.CrossRef Rop, K. V., Langat, P. K., & Ouma, H. A. (2021). Spectrum sensing on high density cognitive radio vehicular ad hoc network. Journal of Communications., 16(7), 259–266.CrossRef
41.
Zurück zum Zitat Hossain, M. A., Schukat, M., & Barrett, E. (2021). Enhancing the spectrum sensing performance of cluster-based cooperative cognitive radio networks via sequential multiple reporting channels. Wireless Personal Communications., 116(3), 2411–2433.CrossRef Hossain, M. A., Schukat, M., & Barrett, E. (2021). Enhancing the spectrum sensing performance of cluster-based cooperative cognitive radio networks via sequential multiple reporting channels. Wireless Personal Communications., 116(3), 2411–2433.CrossRef
42.
Zurück zum Zitat Nasser, A., Chaitou, M., Mansour, A., Yao, K. C., & Charara, H. (2021). A deep neural network model for hybrid spectrum sensing in cognitive radio. Wireless Personal Communications., 118(1), 281–299.CrossRef Nasser, A., Chaitou, M., Mansour, A., Yao, K. C., & Charara, H. (2021). A deep neural network model for hybrid spectrum sensing in cognitive radio. Wireless Personal Communications., 118(1), 281–299.CrossRef
43.
Zurück zum Zitat Chabbra, K., Mahendru, G., & Banerjee, P. (2014). Effect of dynamic threshold & noise uncertainty in energy detection spectrum sensing technique for cognitive radio systems, In International conference on signal processing and integrated networks (SPIN) (pp. 377–381). Chabbra, K., Mahendru, G., & Banerjee, P. (2014). Effect of dynamic threshold & noise uncertainty in energy detection spectrum sensing technique for cognitive radio systems, In International conference on signal processing and integrated networks (SPIN) (pp. 377–381).
44.
Zurück zum Zitat Jothiraj, S., Balu, S., & Rangaraj, N. (2021). An efficient adaptive threshold-based dragonfly optimization model for cooperative spectrum sensing in cognitive radio networks. International Journal of Communication Systems., 34(10), e4829.CrossRef Jothiraj, S., Balu, S., & Rangaraj, N. (2021). An efficient adaptive threshold-based dragonfly optimization model for cooperative spectrum sensing in cognitive radio networks. International Journal of Communication Systems., 34(10), e4829.CrossRef
Metadaten
Titel
A Novel Double Threshold-Based Spectrum Sensing Technique at Low SNR Under Noise Uncertainty for Cognitive Radio Systems
verfasst von
Garima Mahendru
Publikationsdatum
06.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09825-5

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt