Skip to main content
Erschienen in:

27.09.2024 | Vehicle Dynamics and Control, Other Fields of Automotive Engineering

A Novel Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Improved APF and RRT Algorithm

verfasst von: Shuen Zhao, Yao Leng, Maojie Zhao, Kan Wang, Jie Zeng, Wanli Liu

Erschienen in: International Journal of Automotive Technology | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To satisfy multi-objective requirements of the dynamic lane-changing trajectory planning (DLTP) for autonomous vehicles, a novel DLTP method based on the improved artificial potential field (APF) and rapidly exploring random tree (RRT) algorithm is proposed. The problem of lane-changing trajectory planning can be decoupled into trajectory shape planning and speed planning. First, the Frenet coordinate system is employed to transform the planning trajectory on curved roads to that on straight roads. Second, based on sinusoidal obstacle avoidance lane-changing, the potential field of virtual obstacle points at the road boundary is established by integrating information on the position and state of surrounding vehicles. The improved APF algorithm is utilized to plan the shape of the lane-changing trajectory. Then, the motion states of surrounding vehicles are mapped to the obstacle region in the space–time graph, transforming speed planning into a path-searching problem. The efficiency of the RRT algorithm is improved by increasing the heuristic information of the lane-changing endpoint and the multi-objective constraints of the random sampling region. Finally, simulation results validate that the proposed method can plan a smooth lane-changing trajectory, effectively avoid collisions with surrounding vehicles, and ensure real-time stability of the lane-changing process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat An, L. F., Chen, T., Chen, A. G., & Fang, W. (2017). A simulation on path planning of intelligent vehicles based on artificial potential field algorithm. Automotive Engineering, 39(12), 1451–1456.MATH An, L. F., Chen, T., Chen, A. G., & Fang, W. (2017). A simulation on path planning of intelligent vehicles based on artificial potential field algorithm. Automotive Engineering, 39(12), 1451–1456.MATH
Zurück zum Zitat Bae, I., Moon, J., & Seo, J. (2019). Toward a comfortable driving experience for a self-driving shuttle bus. Electronics, 8(9), 943–956.MATH Bae, I., Moon, J., & Seo, J. (2019). Toward a comfortable driving experience for a self-driving shuttle bus. Electronics, 8(9), 943–956.MATH
Zurück zum Zitat Chen, L., Li, Y., Huang, C., Li, B., Xing, Y., Tian, D., & Wang, F. Y. (2022). Milestones in autonomous driving and intelligent vehicles: survey of surveys. IEEE Transactions on Intelligent Vehicles, 8(2), 1046–1056.MATH Chen, L., Li, Y., Huang, C., Li, B., Xing, Y., Tian, D., & Wang, F. Y. (2022). Milestones in autonomous driving and intelligent vehicles: survey of surveys. IEEE Transactions on Intelligent Vehicles, 8(2), 1046–1056.MATH
Zurück zum Zitat Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2018). Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, 45, 76–86.MathSciNet Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2018). Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annual Reviews in Control, 45, 76–86.MathSciNet
Zurück zum Zitat Gao, Z., Zhu, N., Gao, F., Mei, X., & Yang, B. (2021). A self-learning lane change motion planning system considering the driver’s personality. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 235(14), 3322–3338.MATH Gao, Z., Zhu, N., Gao, F., Mei, X., & Yang, B. (2021). A self-learning lane change motion planning system considering the driver’s personality. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 235(14), 3322–3338.MATH
Zurück zum Zitat Gochev, K., Safonova, A., & Likhachev, M. (2014). Anytime tree-restoring weighted A* graph search. Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS). California, American. Gochev, K., Safonova, A., & Likhachev, M. (2014). Anytime tree-restoring weighted A* graph search. Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS). California, American.
Zurück zum Zitat Gritschneder, F., Graichen, K., & Dietmayer, K. (2018). Fast trajectory planning for automated vehicles using gradient-based nonlinear model predictive control. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain. Gritschneder, F., Graichen, K., & Dietmayer, K. (2018). Fast trajectory planning for automated vehicles using gradient-based nonlinear model predictive control. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain.
Zurück zum Zitat Hu, J., Zhang, Y., & Rakheja, S. (2022). Adaptive lane change trajectory planning scheme for autonomous vehicles under various road frictions and vehicle speeds. IEEE Transactions on Intelligent Vehicles, 8(2), 1252–1265.MATH Hu, J., Zhang, Y., & Rakheja, S. (2022). Adaptive lane change trajectory planning scheme for autonomous vehicles under various road frictions and vehicle speeds. IEEE Transactions on Intelligent Vehicles, 8(2), 1252–1265.MATH
Zurück zum Zitat Hubmann, C., Schulz, J., Becker, M., Althoff, D., & Stiller, C. (2018). Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction. IEEE Trans. Intell. Veh, 3(1), 5–17. Hubmann, C., Schulz, J., Becker, M., Althoff, D., & Stiller, C. (2018). Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction. IEEE Trans. Intell. Veh, 3(1), 5–17.
Zurück zum Zitat Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.MATH Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.MATH
Zurück zum Zitat Kim, S., & Likhachev, M. (2015). Path planning for a tethered robot using Multi-Heuristic A with topology-based heuristics. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany. Kim, S., & Likhachev, M. (2015). Path planning for a tethered robot using Multi-Heuristic A with topology-based heuristics. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany.
Zurück zum Zitat Lefevre, S., Carvalho, A., & Borrelli, F. (2015). A learning-based framework for velocity control in autonomous driving. IEEE Transactions on Automation Science and Engineering, 13(1), 32–42.MATH Lefevre, S., Carvalho, A., & Borrelli, F. (2015). A learning-based framework for velocity control in autonomous driving. IEEE Transactions on Automation Science and Engineering, 13(1), 32–42.MATH
Zurück zum Zitat Mechernene, A., Judalet, V., Chaibet, A., & Boukhnifer, M. (2022). Detection and risk analysis with lane-changing decision algorithms for autonomous vehicles. Sensors, 22(21), 8148–8162.MATH Mechernene, A., Judalet, V., Chaibet, A., & Boukhnifer, M. (2022). Detection and risk analysis with lane-changing decision algorithms for autonomous vehicles. Sensors, 22(21), 8148–8162.MATH
Zurück zum Zitat Norouzi, A., Kazemi, R., & Abbassi, O. R. (2019). Path planning and re-planning of lane change manoeuvres in dynamic traffic environments. International Journal of Vehicle Autonomous Systems, 14(3), 239–264. Norouzi, A., Kazemi, R., & Abbassi, O. R. (2019). Path planning and re-planning of lane change manoeuvres in dynamic traffic environments. International Journal of Vehicle Autonomous Systems, 14(3), 239–264.
Zurück zum Zitat Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33–55.MATH Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33–55.MATH
Zurück zum Zitat Pariota, L., Bifulco, G. N., & Brackstone, M. (2016). A linear dynamic model for driving behavior in car following. Transportation Science, 50(3), 1032–1042.MATH Pariota, L., Bifulco, G. N., & Brackstone, M. (2016). A linear dynamic model for driving behavior in car following. Transportation Science, 50(3), 1032–1042.MATH
Zurück zum Zitat Park, G., & Choi, M. (2023). Optimal path planning for autonomous vehicles using artificial potential field algorithm. International Journal of Automotive Technology, 24(5), 1259–1267.MATH Park, G., & Choi, M. (2023). Optimal path planning for autonomous vehicles using artificial potential field algorithm. International Journal of Automotive Technology, 24(5), 1259–1267.MATH
Zurück zum Zitat Ruan, X., Zhou, J., Zhang, J., & Zhu, X. (2020). Robot goal guide RRT path planning based on sub-target search. Control and Decision, 35(10), 2543–2548.MATH Ruan, X., Zhou, J., Zhang, J., & Zhu, X. (2020). Robot goal guide RRT path planning based on sub-target search. Control and Decision, 35(10), 2543–2548.MATH
Zurück zum Zitat Wang, P., Liu, Y., Yao, W., & Yu, Y. (2023). Improved A-star algorithm based on multivariate fusion heuristic function for autonomous driving path planning. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 237(7), 1527–1542.MATH Wang, P., Liu, Y., Yao, W., & Yu, Y. (2023). Improved A-star algorithm based on multivariate fusion heuristic function for autonomous driving path planning. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 237(7), 1527–1542.MATH
Zurück zum Zitat Wang, Y., Wei, C., & Ma, L. (2021). Dynamic lane-changing trajectory planning model for intelligent vehicle based on quadratic programming. China Journal of Highway and Transport, 34(7), 79–94.MATH Wang, Y., Wei, C., & Ma, L. (2021). Dynamic lane-changing trajectory planning model for intelligent vehicle based on quadratic programming. China Journal of Highway and Transport, 34(7), 79–94.MATH
Zurück zum Zitat Wei, M. X., Teng, D. C., & Wu, S. F. (2021). Automatic driving trajectory planning and optimization algorithm based on Frenet coordinate system. Control and Decision, 36(4), 815–824.MATH Wei, M. X., Teng, D. C., & Wu, S. F. (2021). Automatic driving trajectory planning and optimization algorithm based on Frenet coordinate system. Control and Decision, 36(4), 815–824.MATH
Zurück zum Zitat Werling, M., Ziegler, J., Kammel, S., & Thrun, S. (2010). Optimal trajectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE international conference on robotics and automation. New York, American. Werling, M., Ziegler, J., Kammel, S., & Thrun, S. (2010). Optimal trajectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE international conference on robotics and automation. New York, American.
Zurück zum Zitat Xiu, C. J., & Chen, H. (2013). A research on local path planning for autonomous vehicles based on improved APF method. Automotive Engineering, 9(11), 808–811.MATH Xiu, C. J., & Chen, H. (2013). A research on local path planning for autonomous vehicles based on improved APF method. Automotive Engineering, 9(11), 808–811.MATH
Zurück zum Zitat Yang, W., Li, C., & Zhou, Y. P. (2022). A path planning method for autonomous vehicles based on risk assessment. World Electric Vehicle Journal, 13(12), 234–249.MATH Yang, W., Li, C., & Zhou, Y. P. (2022). A path planning method for autonomous vehicles based on risk assessment. World Electric Vehicle Journal, 13(12), 234–249.MATH
Zurück zum Zitat Ye, M., Pu, L., Li, P., Lu, X. W., & Liu, Y. G. (2022). Time-series-based personalized lane-changing decision making model. Sensors, 22(17), 6659–6678.MATH Ye, M., Pu, L., Li, P., Lu, X. W., & Liu, Y. G. (2022). Time-series-based personalized lane-changing decision making model. Sensors, 22(17), 6659–6678.MATH
Zurück zum Zitat Yuan, J., Yang, L., Tang, X., & Chen, A. (2022). Autonomous vehicle motion planning based on improved RRT* algorithm and trajectory optimization. Acta Automatica Sinica, 48(9), 2168–2177.MATH Yuan, J., Yang, L., Tang, X., & Chen, A. (2022). Autonomous vehicle motion planning based on improved RRT* algorithm and trajectory optimization. Acta Automatica Sinica, 48(9), 2168–2177.MATH
Zurück zum Zitat Zeng, D., Yu, Z., Xiong, L., Zhao, J., Zhang, P., Li, Z., & Zhou, Y. (2019). A novel robust lane change trajectory planning method for autonomous vehicle. In 2019 IEEE Intelligent Vehicles Symposium (IV). New York, American. Zeng, D., Yu, Z., Xiong, L., Zhao, J., Zhang, P., Li, Z., & Zhou, Y. (2019). A novel robust lane change trajectory planning method for autonomous vehicle. In 2019 IEEE Intelligent Vehicles Symposium (IV). New York, American.
Zurück zum Zitat Zhao, S. E., Wang, J. X., & Li, Y. L. (2021). Lane changing trajectory planning of intelligent vehicle based on multiple objective optimization. Journal of Traffic and Transportation Engineering, 21(2), 232–242.MATH Zhao, S. E., Wang, J. X., & Li, Y. L. (2021). Lane changing trajectory planning of intelligent vehicle based on multiple objective optimization. Journal of Traffic and Transportation Engineering, 21(2), 232–242.MATH
Zurück zum Zitat Zong, C., Han, X., Zhang, D., Liu, Y., Zhao, W., & Sun, M. (2021). Research on local path planning based on improved RRT algorithm. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 235(8), 2086–2100.MATH Zong, C., Han, X., Zhang, D., Liu, Y., Zhao, W., & Sun, M. (2021). Research on local path planning based on improved RRT algorithm. Proceedings of the Institution of Mechanical Engineers, Part d: Journal of Automobile Engineering, 235(8), 2086–2100.MATH
Metadaten
Titel
A Novel Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Improved APF and RRT Algorithm
verfasst von
Shuen Zhao
Yao Leng
Maojie Zhao
Kan Wang
Jie Zeng
Wanli Liu
Publikationsdatum
27.09.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 2/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00153-0