Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

13.05.2017

A novel electrostatically doped ferroelectric Schottky barrier tunnel FET: process resilient design

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work investigates a process-variation resilient electrostatically-doped ferroelectric Schottky-barrier tunnel FET (ED-FE-SB-TFET) based on negative capacitance (NC). The key attributes of ED-FE-SB-TFET are perovskite ferroelectric (FE) gate stack-induced NC behavior and electrostatic doping to induce pockets at both source/drain and channel interfaces. The positive feedback among the electric dipoles in FE material leads to intrinsic voltage amplification and enhanced gate controllability, thus it facilitates faster switching transitions. The proposed ED-FE-SB-TFET endeavors to create a substantial reduction in the ambipolar current (\(I_\mathrm{Amb}\)), steep sub-threshold slope, paramount boost in drive current, lower drain-induced barrier-lowering, and enhanced scalability. It also obviates the need for metallurgical doping, hence ion-implantation or dopant segregation techniques employed for planar SB-TFETs pocket-doping are no longer required, and it also modifies effective Schottky barrier height and Schottky tunneling barrier width significantly to enhance the device behavior. It offers a simplified fabrication process, and it is highly resilient towards process variations, doping control issues, and random dopant fluctuations. Moreover, there is a reduced thermal budget that facilitates its fabrication on single crystal silicon-on-glass substrate realized by wafer scale epitaxial transfer. Results reveal its potential as strong candidate for next generation, scaled and low power applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vardi, M.Y.: Moore’s law and the sand-heap paradox. Commun. ACM 57(5), 5–5 (2014)CrossRef Vardi, M.Y.: Moore’s law and the sand-heap paradox. Commun. ACM 57(5), 5–5 (2014)CrossRef
2.
Zurück zum Zitat Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)CrossRef Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)CrossRef
3.
Zurück zum Zitat Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)CrossRef Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)CrossRef
4.
Zurück zum Zitat Zhirnov Victor, V., Cavin, R.K.: Nanoelectronics: negative capacitance to the rescue ? Nat. Nanotechnol. 3(2), 77–78 (2008)CrossRef Zhirnov Victor, V., Cavin, R.K.: Nanoelectronics: negative capacitance to the rescue ? Nat. Nanotechnol. 3(2), 77–78 (2008)CrossRef
5.
Zurück zum Zitat Singh, S., Pal, P., Mittal, R., Tamia, A., Kondekar, P.N.: Silicon on ferroelectric Tunnel FET (SOFTFET) for low power application. In: IEEE International Conference on Emerging Electronics (ICEE), pp. 1–3. IISc Bangalore (2014) Singh, S., Pal, P., Mittal, R., Tamia, A., Kondekar, P.N.: Silicon on ferroelectric Tunnel FET (SOFTFET) for low power application. In: IEEE International Conference on Emerging Electronics (ICEE), pp. 1–3. IISc Bangalore (2014)
6.
Zurück zum Zitat Salvatore, G.A., Bouvet, D., Ionescu, A.M.: Demonstration of subthrehold swing smaller than 60 mV/decade in Fe-FET with P (VDF-TrFE)/\(\text{Si}O_{2}\) gate stack. In: IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2008) Salvatore, G.A., Bouvet, D., Ionescu, A.M.: Demonstration of subthrehold swing smaller than 60 mV/decade in Fe-FET with P (VDF-TrFE)/\(\text{Si}O_{2}\) gate stack. In: IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2008)
7.
Zurück zum Zitat Alexandru, R., Salvatore, G.A., Jimenez, D., Ionescu, A.M.: Metal-ferroelectric-meta-oxide-semiconductor field effect transistor with sub-60 mV/decade subthreshold swing and internal voltage amplification. In: IEEE International Electron Devices Meeting (IEDM), pp. 16.1–16.3 (2010) Alexandru, R., Salvatore, G.A., Jimenez, D., Ionescu, A.M.: Metal-ferroelectric-meta-oxide-semiconductor field effect transistor with sub-60 mV/decade subthreshold swing and internal voltage amplification. In: IEEE International Electron Devices Meeting (IEDM), pp. 16.1–16.3 (2010)
8.
Zurück zum Zitat Ionescu, A.M., Lattanzio, L., Salvatore, G.A., De Michielis, L., Boucart, K., Bouvet, D.: The hysteretic ferroelectric tunnel FET. IEEE Trans. Electron Devices 57(12), 3518–3524 (2010)CrossRef Ionescu, A.M., Lattanzio, L., Salvatore, G.A., De Michielis, L., Boucart, K., Bouvet, D.: The hysteretic ferroelectric tunnel FET. IEEE Trans. Electron Devices 57(12), 3518–3524 (2010)CrossRef
9.
Zurück zum Zitat Salvatore, G.A., Lattanzio, L., Bouvet, D., Ionescu, A.M.: Modeling the temperature dependence of Fe-FET static characteristics based on Landau’s theory. IEEE Trans. Electron Devices 58(9), 3162–3169 (2011)CrossRef Salvatore, G.A., Lattanzio, L., Bouvet, D., Ionescu, A.M.: Modeling the temperature dependence of Fe-FET static characteristics based on Landau’s theory. IEEE Trans. Electron Devices 58(9), 3162–3169 (2011)CrossRef
10.
Zurück zum Zitat Lee, M.H., Lin, J.C., Wei, Y.T., Chen, C.W., Tu, W.H., Zhuang, H.K., Tang, M.: Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification. In: IEEE International Electron Devices Meeting (IEDM), pp. 4.5.1–4.5.4 (2013) Lee, M.H., Lin, J.C., Wei, Y.T., Chen, C.W., Tu, W.H., Zhuang, H.K., Tang, M.: Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification. In: IEEE International Electron Devices Meeting (IEDM), pp. 4.5.1–4.5.4 (2013)
11.
Zurück zum Zitat Jhaveri, R., Nagavarapu, V., Woo, J.: Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans. Electron Devices 56(1), 93–99 (2009)CrossRef Jhaveri, R., Nagavarapu, V., Woo, J.: Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans. Electron Devices 56(1), 93–99 (2009)CrossRef
12.
Zurück zum Zitat Kim, J., Jhaveri, R., Woo, I.J., Yang, C.K.K.: Circuit-level performance evaluation of Schottky tunneling transistor in mixed-signal applications. IEEE Trans. Nanotechnol. 10(2), 291–299 (2011)CrossRef Kim, J., Jhaveri, R., Woo, I.J., Yang, C.K.K.: Circuit-level performance evaluation of Schottky tunneling transistor in mixed-signal applications. IEEE Trans. Nanotechnol. 10(2), 291–299 (2011)CrossRef
13.
Zurück zum Zitat Guin, S., Chattopadhyay, A., Karmakar, A., Mallik, A.: Impact of a pocket doping on the device performance of a Schottky tunneling field-effect transistor. IEEE Trans. Electron Devices 61(7), 2515–2522 (2014)CrossRef Guin, S., Chattopadhyay, A., Karmakar, A., Mallik, A.: Impact of a pocket doping on the device performance of a Schottky tunneling field-effect transistor. IEEE Trans. Electron Devices 61(7), 2515–2522 (2014)CrossRef
14.
Zurück zum Zitat Zhang, M., Knoch, J., Zhao, Q.T., Lenk, S., Breuer, U., Mantl, S.: Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs. In: Proceedings of 35th European IEEE Solid-State Device Research Conference, pp. 457–460 (2005) Zhang, M., Knoch, J., Zhao, Q.T., Lenk, S., Breuer, U., Mantl, S.: Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs. In: Proceedings of 35th European IEEE Solid-State Device Research Conference, pp. 457–460 (2005)
15.
Zurück zum Zitat Singh, S., Kondekar, P.N.: Dopingless super-steep impact ionisation MOS (dopingless-IMOS) based on work-function engineering. Electron. Lett. 50(12), 888–889 (2014)CrossRef Singh, S., Kondekar, P.N.: Dopingless super-steep impact ionisation MOS (dopingless-IMOS) based on work-function engineering. Electron. Lett. 50(12), 888–889 (2014)CrossRef
16.
Zurück zum Zitat Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef
17.
Zurück zum Zitat Nadda, K., Jagadesh Kumar, M.: Schottky collector bipolar transistor without impurity doped emitter and base: design and performance. IEEE Trans. Electron Devices 60(9), 2956–2959 (2013)CrossRef Nadda, K., Jagadesh Kumar, M.: Schottky collector bipolar transistor without impurity doped emitter and base: design and performance. IEEE Trans. Electron Devices 60(9), 2956–2959 (2013)CrossRef
18.
Zurück zum Zitat Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
19.
Zurück zum Zitat Singh, S., Kondekar, P.N.: Circuit performance & sensitivity analysis of charge plasma based super-steep negative capacitance junctionless tunnel field effect transistor. J. Nanoelectron. Optoelectron. 12(5), 442–451 (2017) Singh, S., Kondekar, P.N.: Circuit performance & sensitivity analysis of charge plasma based super-steep negative capacitance junctionless tunnel field effect transistor. J. Nanoelectron. Optoelectron. 12(5), 442–451 (2017)
20.
Zurück zum Zitat Singh, S., Singh, A.P., Kondekar, P.N.: A novel self-aligned charge plasma Schottky barrier tunnel FET using work function engineering. Microelectron. Eng. 168, 67–75 (2017) Singh, S., Singh, A.P., Kondekar, P.N.: A novel self-aligned charge plasma Schottky barrier tunnel FET using work function engineering. Microelectron. Eng. 168, 67–75 (2017)
21.
Zurück zum Zitat Singh, S., Kondekar, P.N., Singh, A.P.: Investigation of analog/RF figures-of-merits of charge plasma Schottky barrier tunnel FET. J. Nanoelectron. Optoelectron. (Accepted) Singh, S., Kondekar, P.N., Singh, A.P.: Investigation of analog/RF figures-of-merits of charge plasma Schottky barrier tunnel FET. J. Nanoelectron. Optoelectron. (Accepted)
22.
Zurück zum Zitat Teh, W.H., Trigg, A., Tung, C.H., Kumar, R., Balasubramanian, N., Kwong, D.L.: 200 mm wafer-scale epitaxial transfer of single crystal Si on glass by anodic bonding of silicon-on-insulator wafers. Appl. Phys. Lett. 87(7), 073107 (2005)CrossRef Teh, W.H., Trigg, A., Tung, C.H., Kumar, R., Balasubramanian, N., Kwong, D.L.: 200 mm wafer-scale epitaxial transfer of single crystal Si on glass by anodic bonding of silicon-on-insulator wafers. Appl. Phys. Lett. 87(7), 073107 (2005)CrossRef
23.
Zurück zum Zitat Nadda, K., Kumar, M.J.: Thin-film bipolar transistors on recrystallized polycrystalline silicon without impurity doped junctions: proposal and investigation. J. Disp. Technol. 10(7), 590–594 (2014)CrossRef Nadda, K., Kumar, M.J.: Thin-film bipolar transistors on recrystallized polycrystalline silicon without impurity doped junctions: proposal and investigation. J. Disp. Technol. 10(7), 590–594 (2014)CrossRef
24.
Zurück zum Zitat Kima, H.S., Blick, R.H., Kim, D.M., Eom, C.B.: Bonding siliconon-insulator to glass wafers for integrated bio-electronic circuits. Appl. Phys. Lett. 85(12), 2370–2372 (2004)CrossRef Kima, H.S., Blick, R.H., Kim, D.M., Eom, C.B.: Bonding siliconon-insulator to glass wafers for integrated bio-electronic circuits. Appl. Phys. Lett. 85(12), 2370–2372 (2004)CrossRef
25.
Zurück zum Zitat ATLAS Device Simulation Soft: Silvaco. Santa Clara, CA, USA (2012) ATLAS Device Simulation Soft: Silvaco. Santa Clara, CA, USA (2012)
26.
Zurück zum Zitat Kale, S., Kondekar, P.N.: Ferroelectric Schottky barrier tunnel FET with gate-drain underlap. Superlattices Microstruct. 89, 225–230 (2016)CrossRef Kale, S., Kondekar, P.N.: Ferroelectric Schottky barrier tunnel FET with gate-drain underlap. Superlattices Microstruct. 89, 225–230 (2016)CrossRef
27.
Zurück zum Zitat Mehta, H., Kaur, H.: Modeling and simulation study of novel Double Gate Ferroelectric Junctionless (DGFJL) transistor. Superlattices Microstruct. 97, 536–547 (2016)CrossRef Mehta, H., Kaur, H.: Modeling and simulation study of novel Double Gate Ferroelectric Junctionless (DGFJL) transistor. Superlattices Microstruct. 97, 536–547 (2016)CrossRef
28.
Zurück zum Zitat Saeidi, A., Biswas, A., Ionescu, A.M.: Modeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric. Solid State Electron. 124, 16–23 (2016)CrossRef Saeidi, A., Biswas, A., Ionescu, A.M.: Modeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric. Solid State Electron. 124, 16–23 (2016)CrossRef
29.
Zurück zum Zitat Mikolajick, T., Müller, S., Schenk, T., Yurchuk, E., Slesazeck, S., Schröder, U., Flachowsky, S., van Bentum, R., Kolodinski, S., Polakowski, P., Müller, J.: Doped hafnium oxide—an enabler for ferroelectric field effect transistors. Adv. Sci. Technol. 95, 136–145 (2014)CrossRef Mikolajick, T., Müller, S., Schenk, T., Yurchuk, E., Slesazeck, S., Schröder, U., Flachowsky, S., van Bentum, R., Kolodinski, S., Polakowski, P., Müller, J.: Doped hafnium oxide—an enabler for ferroelectric field effect transistors. Adv. Sci. Technol. 95, 136–145 (2014)CrossRef
30.
Zurück zum Zitat Kojima, T., Sakai, T., Watanabe, T., Funakubo, H., Saito, K., Osada, M.: Large remanent polarization of \((Bi, Nd)_{4}Ti_{3}O_{12}\) epitaxial thin films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 80(15), 2746–2748 (2002)CrossRef Kojima, T., Sakai, T., Watanabe, T., Funakubo, H., Saito, K., Osada, M.: Large remanent polarization of \((Bi, Nd)_{4}Ti_{3}O_{12}\) epitaxial thin films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 80(15), 2746–2748 (2002)CrossRef
31.
Zurück zum Zitat Shieh, J., Yeh, J.H., Shu, Y.C., Yen, J.H.: Hysteresis behaviors of barium titanate single crystals based on the operation of multiple 90 switching systems. Mater. Sci. Eng. B 161(1), 50–54 (2009)CrossRef Shieh, J., Yeh, J.H., Shu, Y.C., Yen, J.H.: Hysteresis behaviors of barium titanate single crystals based on the operation of multiple 90 switching systems. Mater. Sci. Eng. B 161(1), 50–54 (2009)CrossRef
32.
Zurück zum Zitat Roy, A., Prasad, R., Auluck, S., Garg, A.: Engineering polarization rotation in ferroelectric bismuth titanate. Appl. Phys. Lett. 102(18), 182901 (2013)CrossRef Roy, A., Prasad, R., Auluck, S., Garg, A.: Engineering polarization rotation in ferroelectric bismuth titanate. Appl. Phys. Lett. 102(18), 182901 (2013)CrossRef
33.
Zurück zum Zitat Cross, L.E.: Ferroelectric ceramics: tailoring properties for specific applications. In: Ferroelectric Ceramics, pp. 1–85. Birkhäuser, Basel (1993) Cross, L.E.: Ferroelectric ceramics: tailoring properties for specific applications. In: Ferroelectric Ceramics, pp. 1–85. Birkhäuser, Basel (1993)
Metadaten
Titel
A novel electrostatically doped ferroelectric Schottky barrier tunnel FET: process resilient design
Publikationsdatum
13.05.2017
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-0987-6

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt