Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

30.05.2020

A Novel Elliptical Ring Microstrip Patch Antenna for Ultra-Wideband Applications

verfasst von: Manisha Gupta, Kevin Kipruto Mutai, Vinita Mathur, Deepak Bhatnagar

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a new ultra-wideband (UWB) antenna. The proposed antenna is designed for operation from 3 to 15 GHz. It consists of a Sierpinski fractal based ellipse etched onto the radiating patch and a rectangular defected ground structure in the ground plane. Details of the proposed antenna as well as with variations in design variables are presented and the results discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balanis, C. A. (2005). Antennas theory: Analysis and design (3rd ed.). Hoboken: Wiley. Balanis, C. A. (2005). Antennas theory: Analysis and design (3rd ed.). Hoboken: Wiley.
2.
Zurück zum Zitat Kumar, Y., & Singh, S. (2017). Performance analysis of coaxial probe fed modified Sierpinski–Meander hybrid fractal heptaband antenna for future wireless communication networks. Wireless Personal Communications, 94, 3251–3263.CrossRef Kumar, Y., & Singh, S. (2017). Performance analysis of coaxial probe fed modified Sierpinski–Meander hybrid fractal heptaband antenna for future wireless communication networks. Wireless Personal Communications, 94, 3251–3263.CrossRef
3.
Zurück zum Zitat Zang, Y., Zhai, H., Xi, L., & Li, L. (2017). A compact microstrip antenna with enhanced bandwidth and ultra-wideband harmonic suppression. IEEE Transactions on Antennas and Propagation, 67(3), 1969–1974.CrossRef Zang, Y., Zhai, H., Xi, L., & Li, L. (2017). A compact microstrip antenna with enhanced bandwidth and ultra-wideband harmonic suppression. IEEE Transactions on Antennas and Propagation, 67(3), 1969–1974.CrossRef
4.
Zurück zum Zitat Rappaport, T. S., Shu, S., Rimma, M., Hang, Z., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work. IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Shu, S., Rimma, M., Hang, Z., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work. IEEE Access, 1, 335–349.CrossRef
6.
Zurück zum Zitat Chiang, K. H., & Tam, K. M. (2008). Microstrip monopole antenna with enhanced bandwidth using defected ground structure. IEEE Antennas and Wireless Propagation Letters, 7, 532–535.CrossRef Chiang, K. H., & Tam, K. M. (2008). Microstrip monopole antenna with enhanced bandwidth using defected ground structure. IEEE Antennas and Wireless Propagation Letters, 7, 532–535.CrossRef
7.
Zurück zum Zitat Singh, P., & Aggarwal, R. (2016). Comparative study of UWB microstrip antennas with different defected ground structures. In International conference on micro-electronics and telecommunication engineering (ICMETE), Ghaziabad (pp. 42–46). https://doi.org/10.1109/ICMETE.2016.107. Singh, P., & Aggarwal, R. (2016). Comparative study of UWB microstrip antennas with different defected ground structures. In International conference on micro-electronics and telecommunication engineering (ICMETE), Ghaziabad (pp. 42–46). https://​doi.​org/​10.​1109/​ICMETE.​2016.​107.
8.
Zurück zum Zitat Liu, W., Wu, C., & Dai, Y. (2011). Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Transactions on Antennas and Propagation, 59(7), 2457–2462.CrossRef Liu, W., Wu, C., & Dai, Y. (2011). Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Transactions on Antennas and Propagation, 59(7), 2457–2462.CrossRef
9.
Zurück zum Zitat Liu, J., Yin, W. Y., & He, S. (2010). A new defected ground structure and its application for miniaturized switchable antenna. Progress in Electromagnetics Research, 107, 115–128.CrossRef Liu, J., Yin, W. Y., & He, S. (2010). A new defected ground structure and its application for miniaturized switchable antenna. Progress in Electromagnetics Research, 107, 115–128.CrossRef
11.
Zurück zum Zitat Torres, T. M., Dimas, J. G., Castañeda-Sotelo, R., & Vargas-Bernal, R. (2013). Rectangular patch antenna array with defect ground structure for Wi-Fi. In 3 IEEE International autumn meeting on power electronics and computing (ROPEC), Mexico City (pp. 1–6). https://doi.org/10.1109/ROPEC.2013.6702732. Torres, T. M., Dimas, J. G., Castañeda-Sotelo, R., & Vargas-Bernal, R. (2013). Rectangular patch antenna array with defect ground structure for Wi-Fi. In 3 IEEE International autumn meeting on power electronics and computing (ROPEC), Mexico City (pp. 1–6). https://​doi.​org/​10.​1109/​ROPEC.​2013.​6702732.
12.
Zurück zum Zitat Guha, D., Kumar, C., & Pal, S. (2009). Improved cross-polarization characteristics of circular microstrip antenna employing arc-shaped defected ground structure (DGS). IEEE Antennas and Wireless Propagation Letters, 8, 1367–1369.CrossRef Guha, D., Kumar, C., & Pal, S. (2009). Improved cross-polarization characteristics of circular microstrip antenna employing arc-shaped defected ground structure (DGS). IEEE Antennas and Wireless Propagation Letters, 8, 1367–1369.CrossRef
13.
Zurück zum Zitat Guha, D., Biswas, S., Biswas, M., Siddiqui, J. Y., & Antar, Y. M. (2006). Concentric ring-shaped defected ground structures for microstrip applications. IEEE Antennas and Wireless Propagation Letters, 5, 402–405.CrossRef Guha, D., Biswas, S., Biswas, M., Siddiqui, J. Y., & Antar, Y. M. (2006). Concentric ring-shaped defected ground structures for microstrip applications. IEEE Antennas and Wireless Propagation Letters, 5, 402–405.CrossRef
14.
Zurück zum Zitat Jaume, A., Carles, P., Carmen, B., Raquel, M., & Jordi, S. (2001). Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal. Microwave and Optical Technology Letters, 31, 239–241.CrossRef Jaume, A., Carles, P., Carmen, B., Raquel, M., & Jordi, S. (2001). Small and high-directivity bow-tie patch antenna based on the Sierpinski fractal. Microwave and Optical Technology Letters, 31, 239–241.CrossRef
15.
Zurück zum Zitat Chen, V., Wang, G., & Zhang, C. (2008). Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes. IEEE Antennas and Wireless Propagation Letters, 7, 738–741.CrossRef Chen, V., Wang, G., & Zhang, C. (2008). Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes. IEEE Antennas and Wireless Propagation Letters, 7, 738–741.CrossRef
16.
Zurück zum Zitat Yu, D., Gong, S. X., Xu, Y., & Wan, Y. T. (2015). Dual-band dual-polarized circular microstrip patch antenna with the curved slots on the ground. Progress in Electromagnetics Research Letters, 51, 27–31.CrossRef Yu, D., Gong, S. X., Xu, Y., & Wan, Y. T. (2015). Dual-band dual-polarized circular microstrip patch antenna with the curved slots on the ground. Progress in Electromagnetics Research Letters, 51, 27–31.CrossRef
17.
Zurück zum Zitat Yu, Z. W., Wang, G. M., Gao, X. J., & Lu, K. (2010). A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal shapes. Progress IN Electromagnetics Research Letters, 17, 95–103.CrossRef Yu, Z. W., Wang, G. M., Gao, X. J., & Lu, K. (2010). A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal shapes. Progress IN Electromagnetics Research Letters, 17, 95–103.CrossRef
18.
Zurück zum Zitat Kuzu, S., & Akcam, N. (2016). Array antenna using defected ground structure with fractal form generated by Apollonius circle. IEEE Antennas and Wireless Propagation Letters, 16, 1020–1023.CrossRef Kuzu, S., & Akcam, N. (2016). Array antenna using defected ground structure with fractal form generated by Apollonius circle. IEEE Antennas and Wireless Propagation Letters, 16, 1020–1023.CrossRef
19.
Zurück zum Zitat Panda, R. A., Mishra, D., Panda, E. P., & Patnaik, N. (2020). Reshaped circular patch antenna with optimized circular slot for 5G application. In H. Sarm, & R. Shaik (Eds.), Emerging trends in electrical, communications, and information technologies, Lecture notes in electrical engineering (Vol. 569, pp. 741–749). https://doi.org/10.1007/978-981-13-8942-9_63. Panda, R. A., Mishra, D., Panda, E. P., & Patnaik, N. (2020). Reshaped circular patch antenna with optimized circular slot for 5G application. In H. Sarm, & R. Shaik (Eds.), Emerging trends in electrical, communications, and information technologies, Lecture notes in electrical engineering (Vol. 569, pp. 741–749). https://​doi.​org/​10.​1007/​978-981-13-8942-9_​63.
20.
Zurück zum Zitat Panda, R. A., & Mishra, D. (2020). Efficient design of bi-circular patch antenna for 5G communication with mathematical calculations for resonant frequencies. Wireless Personal Communications, 112, 717–727.CrossRef Panda, R. A., & Mishra, D. (2020). Efficient design of bi-circular patch antenna for 5G communication with mathematical calculations for resonant frequencies. Wireless Personal Communications, 112, 717–727.CrossRef
21.
Zurück zum Zitat Huang, Y. H., Liu, Z., & Zhou, S. G. (2009). A wideband and dual frequency three-dimensional transition fed circular patch antenna for indoor base station application. Progress in Electromagnetics Research Letters, 11, 47–54.CrossRef Huang, Y. H., Liu, Z., & Zhou, S. G. (2009). A wideband and dual frequency three-dimensional transition fed circular patch antenna for indoor base station application. Progress in Electromagnetics Research Letters, 11, 47–54.CrossRef
22.
Zurück zum Zitat Chang, L., Lai, W., Cheng, J., & Hsue, C. (2014). A symmetrical reconfigurable multi polarization circular patch antenna. IEEE Antennas and Wireless Propagation Letters, 13, 87–90.CrossRef Chang, L., Lai, W., Cheng, J., & Hsue, C. (2014). A symmetrical reconfigurable multi polarization circular patch antenna. IEEE Antennas and Wireless Propagation Letters, 13, 87–90.CrossRef
25.
Zurück zum Zitat Cui, L., Wu, W., & Fang, D. (2015). Wideband circular patch antenna for pattern diversity application. IEEE Antennas and Wireless Propagation Letters, 14, 1298–1301.CrossRef Cui, L., Wu, W., & Fang, D. (2015). Wideband circular patch antenna for pattern diversity application. IEEE Antennas and Wireless Propagation Letters, 14, 1298–1301.CrossRef
26.
Zurück zum Zitat Gupta, M., & Mathur, V. (2018). Multiband multiple elliptical microstrip patch antenna with circular polarization. Wireless Personal Communications, 102, 355–368.CrossRef Gupta, M., & Mathur, V. (2018). Multiband multiple elliptical microstrip patch antenna with circular polarization. Wireless Personal Communications, 102, 355–368.CrossRef
27.
Zurück zum Zitat Lin, W., & Wong, H. (2017). Multi-polarization reconfigurable circular patch antenna with L-shaped probes. IEEE Antennaas and WIreless Propagation Letters, 16, 1549–1552.CrossRef Lin, W., & Wong, H. (2017). Multi-polarization reconfigurable circular patch antenna with L-shaped probes. IEEE Antennaas and WIreless Propagation Letters, 16, 1549–1552.CrossRef
28.
Zurück zum Zitat Liu, S., Wu, W., & Fang, D. (2016). Wideband monopole-like radiation pattern circular patch antenna with high gain and low cross-polarization. IEEE Transactions on Antennas and Propagation, 4(5), 2042–2045.CrossRef Liu, S., Wu, W., & Fang, D. (2016). Wideband monopole-like radiation pattern circular patch antenna with high gain and low cross-polarization. IEEE Transactions on Antennas and Propagation, 4(5), 2042–2045.CrossRef
29.
Zurück zum Zitat Mak, K. M., Lai, H. W., Luk, K. M., & Ho, K. L. (2017). Polarization reconfigurable circular patch antenna with a C-shaped. IEEE Transactions on Antennas and Propagation, 65(3), 1388–1392.MathSciNetCrossRef Mak, K. M., Lai, H. W., Luk, K. M., & Ho, K. L. (2017). Polarization reconfigurable circular patch antenna with a C-shaped. IEEE Transactions on Antennas and Propagation, 65(3), 1388–1392.MathSciNetCrossRef
Metadaten
Titel
A Novel Elliptical Ring Microstrip Patch Antenna for Ultra-Wideband Applications
verfasst von
Manisha Gupta
Kevin Kipruto Mutai
Vinita Mathur
Deepak Bhatnagar
Publikationsdatum
30.05.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07515-8

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt