Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Structural and Multidisciplinary Optimization 4/2018

30.10.2017 | RESEARCH PAPER

A novel evidence theory model dealing with correlated variables and the corresponding structural reliability analysis method

verfasst von: Z. Zhang, C. Jiang, X. X. Ruan, F. J. Guan

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Evidence theory serves as a powerful tool to deal with epistemic uncertainty which widely exists in the design stages of many complex engineering systems or products. However, the traditional evidence theory model cannot handle parameter correlations that may have profound influences on the reliability analysis results. This paper is supposed to develop a novel evidence theory model with consideration of parameter correlations and its corresponding structural reliability analysis method. First, a multidimensional parallelepiped uncertainty domain which takes into account the influence of parameter correlations is constructed. Second, the corresponding joint basic probability assignments are established for each focal element in the uncertainty domain. Finally, the reliability interval composed of the belief and plausibility measures are computed. Several numerical examples are investigated to demonstrate the effectiveness of the proposed model and the corresponding reliability analysis method.
Literatur
Zurück zum Zitat Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85(1–3):281–294 CrossRef Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85(1–3):281–294 CrossRef
Zurück zum Zitat Bae HR, Grandhi RV, Canfield RA (2004a) An approximation approach for uncertainty quantification using evidence theory. Reliab. Eng. Syst. Saf. 86(3):215–225 CrossRef Bae HR, Grandhi RV, Canfield RA (2004a) An approximation approach for uncertainty quantification using evidence theory. Reliab. Eng. Syst. Saf. 86(3):215–225 CrossRef
Zurück zum Zitat Bae HR, Grandhi RV, Canfield RA (2004b) Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Comput Struct 82(13–14):1101–1112 CrossRef Bae HR, Grandhi RV, Canfield RA (2004b) Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Comput Struct 82(13–14):1101–1112 CrossRef
Zurück zum Zitat Basir O, Yuan X (2007) Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Inform Fusion 8(4):379–386 CrossRef Basir O, Yuan X (2007) Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Inform Fusion 8(4):379–386 CrossRef
Zurück zum Zitat Bauer M (1997) Approximation algorithms and decision making in the Dempster-Shafer theory of evidence—an empirical study. Int J Approx Reason 17(2–3):217–237 MathSciNetCrossRefMATH Bauer M (1997) Approximation algorithms and decision making in the Dempster-Shafer theory of evidence—an empirical study. Int J Approx Reason 17(2–3):217–237 MathSciNetCrossRefMATH
Zurück zum Zitat Ben-Haim Y, Elishakoff I (2013) Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam MATH Ben-Haim Y, Elishakoff I (2013) Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam MATH
Zurück zum Zitat Beynon M, Cosker D, Marshall D (2001) An expert system for multi-criteria decision making using Dempster Shafer theory. Expert Syst Appl 20(4):357–367 CrossRef Beynon M, Cosker D, Marshall D (2001) An expert system for multi-criteria decision making using Dempster Shafer theory. Expert Syst Appl 20(4):357–367 CrossRef
Zurück zum Zitat Cai KY (2012) Introduction to fuzzy reliability. Springer, New York Cai KY (2012) Introduction to fuzzy reliability. Springer, New York
Zurück zum Zitat Du X (2006) Uncertainty analysis with probability and evidence theories. In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pennsylvania, USA Du X (2006) Uncertainty analysis with probability and evidence theories. In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pennsylvania, USA
Zurück zum Zitat Du X, Hu Z (2012) First order reliability method with truncated random variables. J Mech Des 134(9):091005 CrossRef Du X, Hu Z (2012) First order reliability method with truncated random variables. J Mech Des 134(9):091005 CrossRef
Zurück zum Zitat Eldred MS, Swiler LP, Tang G (2011) Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96(9):1092–1113 CrossRef Eldred MS, Swiler LP, Tang G (2011) Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96(9):1092–1113 CrossRef
Zurück zum Zitat Elishakoff I, Haftka R, Fang J (1994) Structural design under bounded uncertainty—optimization with anti-optimizati.n. Comput Struct 53(6):1401–1405 CrossRefMATH Elishakoff I, Haftka R, Fang J (1994) Structural design under bounded uncertainty—optimization with anti-optimizati.n. Comput Struct 53(6):1401–1405 CrossRefMATH
Zurück zum Zitat Ferson S, Nelsen RB, Hajagos J, Berleant DJ, Zhang J, Tucker WT, Ginzburg LR, Oberkampf WL (2004) Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Report No SAND 2004–3072, Sandia National Laboratories Ferson S, Nelsen RB, Hajagos J, Berleant DJ, Zhang J, Tucker WT, Ginzburg LR, Oberkampf WL (2004) Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Report No SAND 2004–3072, Sandia National Laboratories
Zurück zum Zitat Gogu C, Qiu Y, Segonds S, Bes C (2012) Optimization based algorithms for uncertainty propagation through functions with multidimensional output within evidence theory. J Mech Des 134(10):614–620 CrossRef Gogu C, Qiu Y, Segonds S, Bes C (2012) Optimization based algorithms for uncertainty propagation through functions with multidimensional output within evidence theory. J Mech Des 134(10):614–620 CrossRef
Zurück zum Zitat Helton JC (2011) Quantification of margins and uncertainties: Conceptual and computational basis. Reliab. Eng. Syst. Saf. 96(9):976–1013 CrossRef Helton JC (2011) Quantification of margins and uncertainties: Conceptual and computational basis. Reliab. Eng. Syst. Saf. 96(9):976–1013 CrossRef
Zurück zum Zitat Helton JC, Johnson JD, Oberkampf WL (2004) An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliab. Eng. Syst. Saf. 85(1–3):39–71 CrossRef Helton JC, Johnson JD, Oberkampf WL (2004) An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliab. Eng. Syst. Saf. 85(1–3):39–71 CrossRef
Zurück zum Zitat Hoffman FO, Hammonds JS (1994) Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal 14(5):707–712 CrossRef Hoffman FO, Hammonds JS (1994) Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal 14(5):707–712 CrossRef
Zurück zum Zitat Huang Z, Jiang C, Zhang Z, Fang T, Han X (2017a) A decoupling approach for evidence-theory-based reliability design optimization. Struct Multidiscip O 56(3):647–661 CrossRef Huang Z, Jiang C, Zhang Z, Fang T, Han X (2017a) A decoupling approach for evidence-theory-based reliability design optimization. Struct Multidiscip O 56(3):647–661 CrossRef
Zurück zum Zitat Huang Z, Jiang C, Zhou Y, Zheng J, Long X (2017b) Reliability-based design optimization for problems with interval distribution parameters. Struct Multidiscip O 55(2):513–528 MathSciNetCrossRef Huang Z, Jiang C, Zhou Y, Zheng J, Long X (2017b) Reliability-based design optimization for problems with interval distribution parameters. Struct Multidiscip O 55(2):513–528 MathSciNetCrossRef
Zurück zum Zitat Jiang C, Han X, Lu G, Liu ZZ, Bai Y (2011) Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput Meth Appl M 200(33–36):2528–2546 CrossRefMATH Jiang C, Han X, Lu G, Liu ZZ, Bai Y (2011) Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput Meth Appl M 200(33–36):2528–2546 CrossRefMATH
Zurück zum Zitat Jiang C, Wang B, Li ZR, Han X, Yu DJ (2013a) An evidence-theory model considering dependence among parameters and its application in structural reliability analysis. Eng Struct 57:12–22 CrossRef Jiang C, Wang B, Li ZR, Han X, Yu DJ (2013a) An evidence-theory model considering dependence among parameters and its application in structural reliability analysis. Eng Struct 57:12–22 CrossRef
Zurück zum Zitat Jiang C, Zhang Q, Han X, Liu J, Hu D (2015) Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis. Int J Numer Meth Eng 103(16):31–59 MathSciNetCrossRefMATH Jiang C, Zhang Q, Han X, Liu J, Hu D (2015) Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis. Int J Numer Meth Eng 103(16):31–59 MathSciNetCrossRefMATH
Zurück zum Zitat Jiang C, Zhang Z, Han X, Liu J (2013b) A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty. Comput Struct 129:1–12 CrossRef Jiang C, Zhang Z, Han X, Liu J (2013b) A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty. Comput Struct 129:1–12 CrossRef
Zurück zum Zitat Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Safe 31(2):105–112 CrossRef Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Safe 31(2):105–112 CrossRef
Zurück zum Zitat Lee JO, Yang YS, Ruy WS (2002) A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Comput Struct 80(3–4):257–269 CrossRef Lee JO, Yang YS, Ruy WS (2002) A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Comput Struct 80(3–4):257–269 CrossRef
Zurück zum Zitat Liu YW, Moses M (1994) A sequential response surface method and its application in the reliability analysis of aircraft structural systems. Struct Safe 16(1–2):39–46 Liu YW, Moses M (1994) A sequential response surface method and its application in the reliability analysis of aircraft structural systems. Struct Safe 16(1–2):39–46
Zurück zum Zitat Madsen HO, Krenk S, Lind NC (2006) Methods of structural safety. Dover Publications, New York Madsen HO, Krenk S, Lind NC (2006) Methods of structural safety. Dover Publications, New York
Zurück zum Zitat Morio J (2011) Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position. Reliab. Eng. Syst. Saf. 96(1):178–183 CrossRef Morio J (2011) Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position. Reliab. Eng. Syst. Saf. 96(1):178–183 CrossRef
Zurück zum Zitat Mourelatos ZP, Zhou J (2005) A design optimization method using evidence theory. J Mech Des 128(4):901–908 CrossRef Mourelatos ZP, Zhou J (2005) A design optimization method using evidence theory. J Mech Des 128(4):901–908 CrossRef
Zurück zum Zitat Ni B, Jiang C, Han X (2016) An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis. Appl Math Model 40(7–8):4727–4745 MathSciNetCrossRef Ni B, Jiang C, Han X (2016) An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis. Appl Math Model 40(7–8):4727–4745 MathSciNetCrossRef
Zurück zum Zitat Oberkampf WL, Helton JC, Sentz K (2001) Mathematical representation of uncertainty. In 19th AIAA Applied Aerodynamics Conference, CA Oberkampf WL, Helton JC, Sentz K (2001) Mathematical representation of uncertainty. In 19th AIAA Applied Aerodynamics Conference, CA
Zurück zum Zitat Park I, Grandhi RV (2012) Quantification of model-form and parametric uncertainty using evidence theory. Struct Safe 39:44–51 CrossRef Park I, Grandhi RV (2012) Quantification of model-form and parametric uncertainty using evidence theory. Struct Safe 39:44–51 CrossRef
Zurück zum Zitat Qiu Z, Wang L (2016) The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Sci China Phys Mech 59:114632 CrossRef Qiu Z, Wang L (2016) The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Sci China Phys Mech 59:114632 CrossRef
Zurück zum Zitat Rao KD, Kushwaha H, Verma AK, Srividya A (2007) Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies. Reliab. Eng. Syst. Saf. 92(7):947–956 CrossRef Rao KD, Kushwaha H, Verma AK, Srividya A (2007) Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies. Reliab. Eng. Syst. Saf. 92(7):947–956 CrossRef
Zurück zum Zitat Rao SS, Annamdas K (2013) A comparative study of evidence theories in the modeling, analysis, and design of engineering systems. J Mech Des 135(6):061006 CrossRef Rao SS, Annamdas K (2013) A comparative study of evidence theories in the modeling, analysis, and design of engineering systems. J Mech Des 135(6):061006 CrossRef
Zurück zum Zitat Riley ME (2015) Evidence-based quantification of uncertainties induced via simulation-based modeling. Reliab. Eng. Syst. Saf. 133:79–86 CrossRef Riley ME (2015) Evidence-based quantification of uncertainties induced via simulation-based modeling. Reliab. Eng. Syst. Saf. 133:79–86 CrossRef
Zurück zum Zitat Shafer G (1976) A mathematical theory of evidence. Princeton University Press, New Jersey MATH Shafer G (1976) A mathematical theory of evidence. Princeton University Press, New Jersey MATH
Zurück zum Zitat Shah H, Hosder S, Winter T (2015) Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions. Reliab. Eng. Syst. Saf. 138:59–72 CrossRef Shah H, Hosder S, Winter T (2015) Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions. Reliab. Eng. Syst. Saf. 138:59–72 CrossRef
Zurück zum Zitat Sobczyk K, Trcebicki J (1999) Approximate probability distributions for stochastic systems: maximum entropy method. Comput Method Appl M 168(1–4):91–111 MathSciNetCrossRefMATH Sobczyk K, Trcebicki J (1999) Approximate probability distributions for stochastic systems: maximum entropy method. Comput Method Appl M 168(1–4):91–111 MathSciNetCrossRefMATH
Zurück zum Zitat Srivastava RK, Deb K, Tulshyan R (2013) An evolutionary algorithm based approach to design optimization using evidence theory. J Mech Des 135:081003 CrossRef Srivastava RK, Deb K, Tulshyan R (2013) An evolutionary algorithm based approach to design optimization using evidence theory. J Mech Des 135:081003 CrossRef
Zurück zum Zitat Tang H, Li D, Chen W, Xue S (2016) Uncertainty quantification using evidence theory in concrete fatigue damage prognosis. In IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa Tang H, Li D, Chen W, Xue S (2016) Uncertainty quantification using evidence theory in concrete fatigue damage prognosis. In IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa
Zurück zum Zitat Tang H, Li D, Li J, Xue S (2017) Epistemic uncertainty quantification in metal fatigue crack growth analysis using evidence theory. Int J Fatigue 99:163–174 CrossRef Tang H, Li D, Li J, Xue S (2017) Epistemic uncertainty quantification in metal fatigue crack growth analysis using evidence theory. Int J Fatigue 99:163–174 CrossRef
Zurück zum Zitat Wang L, Wang X, Xia Y (2014) Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech 225:413–430 CrossRefMATH Wang L, Wang X, Xia Y (2014) Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech 225:413–430 CrossRefMATH
Zurück zum Zitat Wang L, Wang X, Su H, Lin G (2017) Reliability estimation of fatigue crack growth prediction via limited measured data. Int J Mech Sci 121:44–57 CrossRef Wang L, Wang X, Su H, Lin G (2017) Reliability estimation of fatigue crack growth prediction via limited measured data. Int J Mech Sci 121:44–57 CrossRef
Zurück zum Zitat Wang Z, Huang HZ, Li Y, Pang Y, Xiao NC (2012) An approach to system reliability analysis with fuzzy random variables. Mech Mach Theory 52:35–46 CrossRef Wang Z, Huang HZ, Li Y, Pang Y, Xiao NC (2012) An approach to system reliability analysis with fuzzy random variables. Mech Mach Theory 52:35–46 CrossRef
Zurück zum Zitat Warren-Hicks W, Hart A (2010) Application of Uncertainty Analysis to Ecological Risks of Pesticides. CRC Press, Florida Warren-Hicks W, Hart A (2010) Application of Uncertainty Analysis to Ecological Risks of Pesticides. CRC Press, Florida
Zurück zum Zitat Yager R, Fedrizzi M, Kacprzyk J (1994) Advances in the Dempster-Shafer theory of evidence. John Wiley & Sons, New York MATH Yager R, Fedrizzi M, Kacprzyk J (1994) Advances in the Dempster-Shafer theory of evidence. John Wiley & Sons, New York MATH
Zurück zum Zitat Yang X, Liu Y, Gao Y (2016) Unified reliability analysis by active learning Kriging model combining with random-set based Monte Carlo simulation method. Int J Numer Meth Eng 108(11):1343–1361 MathSciNetCrossRef Yang X, Liu Y, Gao Y (2016) Unified reliability analysis by active learning Kriging model combining with random-set based Monte Carlo simulation method. Int J Numer Meth Eng 108(11):1343–1361 MathSciNetCrossRef
Zurück zum Zitat Yao W, Chen X, Ouyang Q, Tooren MV (2013) A reliability-based multidisciplinary design optimization procedure based on combined probability and evidence theory. Struct Multidiscip O 48(2):339–354 MathSciNetCrossRef Yao W, Chen X, Ouyang Q, Tooren MV (2013) A reliability-based multidisciplinary design optimization procedure based on combined probability and evidence theory. Struct Multidiscip O 48(2):339–354 MathSciNetCrossRef
Zurück zum Zitat Yin S, Yu D, Yin H, Xia B (2017) A new evidence-theory-based method for response analysis of acoustic system with epistemic uncertainty by using Jacobi expansion. Comput Method Appl M 322:419–440 MathSciNetCrossRef Yin S, Yu D, Yin H, Xia B (2017) A new evidence-theory-based method for response analysis of acoustic system with epistemic uncertainty by using Jacobi expansion. Comput Method Appl M 322:419–440 MathSciNetCrossRef
Zurück zum Zitat Yu X, Chang KH, Choi KK (1998) Probabilistic structural durability prediction. AIAA J 36(4):628–637 CrossRef Yu X, Chang KH, Choi KK (1998) Probabilistic structural durability prediction. AIAA J 36(4):628–637 CrossRef
Zurück zum Zitat Zhang Z, Jiang C, Wang GG, Han X (2015) First and second order approximate reliability analysis methods using evidence theory. Reliab. Eng. Syst. Saf. 137:40–49 CrossRef Zhang Z, Jiang C, Wang GG, Han X (2015) First and second order approximate reliability analysis methods using evidence theory. Reliab. Eng. Syst. Saf. 137:40–49 CrossRef
Metadaten
Titel
A novel evidence theory model dealing with correlated variables and the corresponding structural reliability analysis method
verfasst von
Z. Zhang
C. Jiang
X. X. Ruan
F. J. Guan
Publikationsdatum
30.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1843-9

Weitere Artikel der Ausgabe 4/2018

Structural and Multidisciplinary Optimization 4/2018 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.