Skip to main content
Erschienen in: Meccanica 11-12/2017

07.02.2017

A novel frequency dependent model based on trigonometric functions for a magnetorheological damper

verfasst von: Maria Jesus L. Boada, Beatriz L. Boada, Vicente Diaz

Erschienen in: Meccanica | Ausgabe 11-12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel frequency dependent MR damper model based on trigonometric functions is proposed. The model presents the following advantages in comparison with other previously proposed models: (1) it is based on algebraic functions instead of differential equations, so that it does not present convergence problems when noisy inputs from experimental measurements are used; (2) the number of parameters is reasonable, so that it makes the model computationally efficient in the context of parameter identification and (3) the model has to take into account the variation of the parameters as a function, not only of the applied current but also of the frequency of excitation. Experimental results confirm that the proposed frequency dependent MR damper model improves the accuracy of the model in force simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balamurugan L, Jancirani J, Eltantawie MA (2014) Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system. Int J Automot Technol 15(3):419–427CrossRef Balamurugan L, Jancirani J, Eltantawie MA (2014) Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system. Int J Automot Technol 15(3):419–427CrossRef
2.
Zurück zum Zitat Belanger PR (1992) Estimation of angular velocity and acceleration from shaft encoder measurements. In: Proceedings of the 1992 IEEE international conference on robotics and automation, 1992. pp 585–592 Belanger PR (1992) Estimation of angular velocity and acceleration from shaft encoder measurements. In: Proceedings of the 1992 IEEE international conference on robotics and automation, 1992. pp 585–592
3.
Zurück zum Zitat Boada M, Calvo J, Boada B, Diaz V (2011) Modeling of a magnetorheological damper by recursive lazy learning. Int J Non-Linear Mech 46(3):479–485CrossRef Boada M, Calvo J, Boada B, Diaz V (2011) Modeling of a magnetorheological damper by recursive lazy learning. Int J Non-Linear Mech 46(3):479–485CrossRef
4.
Zurück zum Zitat Choi SB, Han YM (2005) Hysteretic behavior of a magnetorheological fluid: experimental identification. Acta Mech 180(1):37–47CrossRefMATH Choi SB, Han YM (2005) Hysteretic behavior of a magnetorheological fluid: experimental identification. Acta Mech 180(1):37–47CrossRefMATH
5.
Zurück zum Zitat Dimian M, Andrei P (2014) Mathematical models of hysteresis. Noise-driven phenomena in hysteretic systems. Springer, Berlin, pp 1–63MATH Dimian M, Andrei P (2014) Mathematical models of hysteresis. Noise-driven phenomena in hysteretic systems. Springer, Berlin, pp 1–63MATH
6.
Zurück zum Zitat Dominguez A, Sedaghati R, Stiharu I (2006) A new dynamic hysteresis model for magnetorheological dampers. Smart Mater Struct 15(5):1179ADSCrossRef Dominguez A, Sedaghati R, Stiharu I (2006) A new dynamic hysteresis model for magnetorheological dampers. Smart Mater Struct 15(5):1179ADSCrossRef
7.
Zurück zum Zitat Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5(5):565–575ADSCrossRef Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5(5):565–575ADSCrossRef
8.
Zurück zum Zitat Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol 35:399–425ADSCrossRef Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol 35:399–425ADSCrossRef
9.
Zurück zum Zitat Giuclea M, Sireteanu T, Stancioiu D, Stammers CW (2004) Model parameter identification for vehicle vibration control with magnetorheological dampers using computational intelligence methods. Proc Inst Mech Eng, Part I J Syst Contr Eng 218(7):569–581CrossRef Giuclea M, Sireteanu T, Stancioiu D, Stammers CW (2004) Model parameter identification for vehicle vibration control with magnetorheological dampers using computational intelligence methods. Proc Inst Mech Eng, Part I J Syst Contr Eng 218(7):569–581CrossRef
10.
Zurück zum Zitat Ikhouane F, Rodellar J (2005) On the hysteretic Bouc–Wen model. Nonlinear Dyn 42(1):79–95CrossRefMATH Ikhouane F, Rodellar J (2005) On the hysteretic Bouc–Wen model. Nonlinear Dyn 42(1):79–95CrossRefMATH
11.
Zurück zum Zitat Jahromi AF, Bhat RB, Xie WF (2015) Frequency dependent spencer modeling of magnetorheological damper using hybrid optimization approach. Shock Vib 2015:8 Jahromi AF, Bhat RB, Xie WF (2015) Frequency dependent spencer modeling of magnetorheological damper using hybrid optimization approach. Shock Vib 2015:8
12.
Zurück zum Zitat Kwok NM, Ha QP, Nguyen MT, Li J, Samali B (2007) Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Trans 46(2):167–179CrossRef Kwok NM, Ha QP, Nguyen MT, Li J, Samali B (2007) Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Trans 46(2):167–179CrossRef
13.
Zurück zum Zitat Kwok NM, Ha QP, Nguyen TH, Li J, Samali B (2006) A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens Actuators A 132(2):441–451CrossRef Kwok NM, Ha QP, Nguyen TH, Li J, Samali B (2006) A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens Actuators A 132(2):441–451CrossRef
14.
Zurück zum Zitat Li Z, Zheng J, Koo JH, Wang J (2013) An improved polynomial dynamic model of a magnetorheological fluid damper under impact loading. In: Proceedings of the SPIE 8688, active and passive smart structures and integrated systems, vol. 86881C Li Z, Zheng J, Koo JH, Wang J (2013) An improved polynomial dynamic model of a magnetorheological fluid damper under impact loading. In: Proceedings of the SPIE 8688, active and passive smart structures and integrated systems, vol. 86881C
16.
Zurück zum Zitat Metered H, Bonello P, Oyadiji S (2015) Nonparametric identification modeling of magnetorheological damper using chebyshev polynomials fits. SAE Int J Passeng Cars Mech Syst 2(1):1125–1135CrossRef Metered H, Bonello P, Oyadiji S (2015) Nonparametric identification modeling of magnetorheological damper using chebyshev polynomials fits. SAE Int J Passeng Cars Mech Syst 2(1):1125–1135CrossRef
17.
Zurück zum Zitat Min CK, Lee HJ, Cho SW, Lee IW (2007) Modified energy dissipation algorithm for seismic structures using magnetorheological damper. KSCE J Civil Eng 11(2):121–126CrossRef Min CK, Lee HJ, Cho SW, Lee IW (2007) Modified energy dissipation algorithm for seismic structures using magnetorheological damper. KSCE J Civil Eng 11(2):121–126CrossRef
18.
Zurück zum Zitat Nehl TW, Betts JA, Mihalko LS (1995) An integrated relative velocity sensor for real time damping applications. In: Industry applications conference, 1995. Thirtieth IAS annual meeting, IAS’95, vol. 1, pp 484–491 Nehl TW, Betts JA, Mihalko LS (1995) An integrated relative velocity sensor for real time damping applications. In: Industry applications conference, 1995. Thirtieth IAS annual meeting, IAS’95, vol. 1, pp 484–491
19.
Zurück zum Zitat Pacejka H (2012) Tire and vehicle dynamics, 3rd edn. Elsevier, Amsterdam Pacejka H (2012) Tire and vehicle dynamics, 3rd edn. Elsevier, Amsterdam
20.
Zurück zum Zitat Puglisi L, Saltaren R, Garcia-Cena C (2015) On the velocity and acceleration estimation from discrete time-position signal of linear encoders. J Control Eng Appl Inform 17(3):30–40 Puglisi L, Saltaren R, Garcia-Cena C (2015) On the velocity and acceleration estimation from discrete time-position signal of linear encoders. J Control Eng Appl Inform 17(3):30–40
21.
Zurück zum Zitat Segla S, Orecny M (2014) Balance control of semiactive seat suspension with elimination of dynamic jerk. Procedia Eng 96:419–427CrossRef Segla S, Orecny M (2014) Balance control of semiactive seat suspension with elimination of dynamic jerk. Procedia Eng 96:419–427CrossRef
22.
Zurück zum Zitat Sireteanu T, Giuclea M, Mitu AM (2010) Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices. Comput Mech 45(5):431–441CrossRefMATH Sireteanu T, Giuclea M, Mitu AM (2010) Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices. Comput Mech 45(5):431–441CrossRefMATH
23.
Zurück zum Zitat Spaggiari A, Dragoni E (2012) Efficient dynamic modelling and characterization of a magnetorheological damper. Meccanica 47(8):2041–2054CrossRefMATH Spaggiari A, Dragoni E (2012) Efficient dynamic modelling and characterization of a magnetorheological damper. Meccanica 47(8):2041–2054CrossRefMATH
24.
Zurück zum Zitat Spencer B, Dyke S, Sain M, Carlson J (1997) Phenomenological model for magnetorheological dampers. J Eng Mech 123(3):230–238CrossRef Spencer B, Dyke S, Sain M, Carlson J (1997) Phenomenological model for magnetorheological dampers. J Eng Mech 123(3):230–238CrossRef
25.
Zurück zum Zitat Strecker Z, Mazrek I, Roupec J, Klapka M (2015) Influence of MR damper response time on semiactive suspension control efficiency. Meccanica 50(8):1949–1959CrossRef Strecker Z, Mazrek I, Roupec J, Klapka M (2015) Influence of MR damper response time on semiactive suspension control efficiency. Meccanica 50(8):1949–1959CrossRef
26.
Zurück zum Zitat Talatahari S, Kaveh A, Rahbari NM (2012) Parameter identification of Bouc–Wen model for MR fluid dampers using adaptive charged system search optimization. J Mech Sci Technol 26(8):2523–2534CrossRef Talatahari S, Kaveh A, Rahbari NM (2012) Parameter identification of Bouc–Wen model for MR fluid dampers using adaptive charged system search optimization. J Mech Sci Technol 26(8):2523–2534CrossRef
27.
Zurück zum Zitat Wang W, Song Y (2012) Nonlinear vibration semi-active control of automotive steering using magneto-rheological damper. Meccanica 47(8):2027–2039MathSciNetCrossRefMATH Wang W, Song Y (2012) Nonlinear vibration semi-active control of automotive steering using magneto-rheological damper. Meccanica 47(8):2027–2039MathSciNetCrossRefMATH
28.
Zurück zum Zitat Wereley N, Pang L, Kamath G (1998) Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J Intell Mater Syst Struct 9(8):642–649CrossRef Wereley N, Pang L, Kamath G (1998) Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J Intell Mater Syst Struct 9(8):642–649CrossRef
29.
Zurück zum Zitat Xiaomin X, Qing S, Ling Z, Bin Z (2009) Parameter estimation and its sensitivity analysis of the MR damper hysteresis model using a modified genetic algorithm. J Intell Mater Syst Struct 20:2089–2100CrossRef Xiaomin X, Qing S, Ling Z, Bin Z (2009) Parameter estimation and its sensitivity analysis of the MR damper hysteresis model using a modified genetic algorithm. J Intell Mater Syst Struct 20:2089–2100CrossRef
30.
Zurück zum Zitat Yang G, Jung HJ, Spencer BF, Carlson JD (2004) Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. J Eng Mech 9:1107–1114CrossRef Yang G, Jung HJ, Spencer BF, Carlson JD (2004) Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications. J Eng Mech 9:1107–1114CrossRef
Metadaten
Titel
A novel frequency dependent model based on trigonometric functions for a magnetorheological damper
verfasst von
Maria Jesus L. Boada
Beatriz L. Boada
Vicente Diaz
Publikationsdatum
07.02.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 11-12/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0632-2

Weitere Artikel der Ausgabe 11-12/2017

Meccanica 11-12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.