Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 8/2020

14.03.2020 | Research Article-Systems Engineering

A Novel Fuzzy PI Control Approach for Nonlinear Processes

verfasst von: Ibrahim Aliskan

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Classical fuzzy logic controllers fail to control nonlinear systems, which have strong nonlinearity around a certain operating point. In this case, if it is possible, the block-oriented modeling approach could be adopted to separate the highly nonlinear system into two subsystems as a linear time-invariant subsystem and a memoryless nonlinear subsystem. Thereby, a control operation could be carried out on the linear time-invariant block to control the whole system. Respecting this approach, here, a highly nonlinear system (neutralization process) was modeled by using the ARX–polynomial cascade connection. By this means, an opportunity is obtained that the inverse polynomial is utilized to be able to control the ARX subsystem by a classical fuzzy PI controller. And therefore, the fuzzy PI controller performance in controlling nonlinear processes was enhanced. The success of the new approach was confirmed by the results obtained from the control operation carried out in different pH regions for a chemical neutralization process. And also, the results show that the proposed control strategy is as successful as the multiregion fuzzy PI controller in the highly nonlinear process control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Salehi, S.; Shahrokhi, M.; Nejati, A.: Adaptive nonlinear control of pH neutralization processes using fuzzy approximators. Control Eng. Pract. 17, 1329–1337 (2009) Salehi, S.; Shahrokhi, M.; Nejati, A.: Adaptive nonlinear control of pH neutralization processes using fuzzy approximators. Control Eng. Pract. 17, 1329–1337 (2009)
2.
Zurück zum Zitat Holaza, J.; Klauco, M.; Drgona, J.; Oravec, J.; Kvasnica, M.; Fikar, M.: MPC-based reference governor control of a continuous stirred-tank reactor. Comput. Chem. Eng. 108, 289–299 (2018) Holaza, J.; Klauco, M.; Drgona, J.; Oravec, J.; Kvasnica, M.; Fikar, M.: MPC-based reference governor control of a continuous stirred-tank reactor. Comput. Chem. Eng. 108, 289–299 (2018)
3.
Zurück zum Zitat Qin, S.; Border, G.: A multiregion fuzzy logic controller for nonlinear process control. IEEE Trans. Fuzzy Syst. 2, 74–81 (1994) Qin, S.; Border, G.: A multiregion fuzzy logic controller for nonlinear process control. IEEE Trans. Fuzzy Syst. 2, 74–81 (1994)
4.
Zurück zum Zitat Fuente, M.; Robles, C.; Casado, O.; Syafiie, S.; Tadeo, F.: Fuzzy control of a pH neutralization process. Eng. Appl. Artif. Intell. 19, 905–914 (2006) Fuente, M.; Robles, C.; Casado, O.; Syafiie, S.; Tadeo, F.: Fuzzy control of a pH neutralization process. Eng. Appl. Artif. Intell. 19, 905–914 (2006)
5.
Zurück zum Zitat Lawrynczuk, M.: Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models. Neurocomputing 205, 311–328 (2016) Lawrynczuk, M.: Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models. Neurocomputing 205, 311–328 (2016)
6.
Zurück zum Zitat Zarate, L.; Resende, P.: Fuzzy sliding mode controller for a pH process in stirred tanks. Intell. Autom. Soft Comput. 18, 349–367 (2012) Zarate, L.; Resende, P.: Fuzzy sliding mode controller for a pH process in stirred tanks. Intell. Autom. Soft Comput. 18, 349–367 (2012)
7.
Zurück zum Zitat Heredia-Molinero, M.; Sanches-Prieto, J.; Briongos, J.; Palancar, M.: Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point. J. Process Control 24, 1023–1037 (2014) Heredia-Molinero, M.; Sanches-Prieto, J.; Briongos, J.; Palancar, M.: Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point. J. Process Control 24, 1023–1037 (2014)
8.
Zurück zum Zitat Kumbasar, T.; Eksin, I.; Guzelkaya, M.; Yesil, E.: An inverse controller design method for interval type-2 fuzzy models. Soft Comput. 21, 2665–2686 (2017)MATH Kumbasar, T.; Eksin, I.; Guzelkaya, M.; Yesil, E.: An inverse controller design method for interval type-2 fuzzy models. Soft Comput. 21, 2665–2686 (2017)MATH
9.
Zurück zum Zitat Nsengiyumva, W.; Chen, X.: Design and implementation of a novel self-adaptive fuzzy logic controller for a pH neutralization process. Adv. Eng. Res. 127, 97–103 (2018) Nsengiyumva, W.; Chen, X.: Design and implementation of a novel self-adaptive fuzzy logic controller for a pH neutralization process. Adv. Eng. Res. 127, 97–103 (2018)
10.
Zurück zum Zitat Li, F.; Li, J.; Peng, D.: Identification method of neuro-fuzzy-based Hammerstein model with coloured noise. IET Control Theory Appl. 11, 3026–3037 (2017)MathSciNet Li, F.; Li, J.; Peng, D.: Identification method of neuro-fuzzy-based Hammerstein model with coloured noise. IET Control Theory Appl. 11, 3026–3037 (2017)MathSciNet
11.
Zurück zum Zitat Zhang, F.; Yang, C.; Zhou, X.; Zhu, H.: Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy. Hydrometallurgy 178, 60–76 (2018) Zhang, F.; Yang, C.; Zhou, X.; Zhu, H.: Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy. Hydrometallurgy 178, 60–76 (2018)
12.
Zurück zum Zitat Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43, 2687–2701 (2018) Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassan, S.M.: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm. Arab. J. Sci. Eng. 43, 2687–2701 (2018)
13.
Zurück zum Zitat Mahmoodi, S.; Poshtan, J.; Jahed-Motlagh, M.; Montazeri, A.: Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model. Chem. Eng. J. 146, 328–337 (2009) Mahmoodi, S.; Poshtan, J.; Jahed-Motlagh, M.; Montazeri, A.: Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model. Chem. Eng. J. 146, 328–337 (2009)
14.
Zurück zum Zitat Wang, Q.; Zhang, J.: Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines. J. Zhejiang Univ. Sci. C 12, 25–35 (2011) Wang, Q.; Zhang, J.: Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines. J. Zhejiang Univ. Sci. C 12, 25–35 (2011)
15.
Zurück zum Zitat Shaaban, Y.; Tahir, F.; Masting, P.; Mack, J.; Lennox, B.: Control improvement using MPC: a case study of pH control for brine dechlorination. IEEE Access 6, 13418–13428 (2018) Shaaban, Y.; Tahir, F.; Masting, P.; Mack, J.; Lennox, B.: Control improvement using MPC: a case study of pH control for brine dechlorination. IEEE Access 6, 13418–13428 (2018)
16.
Zurück zum Zitat Vatankhah, B.; Farrokhi, M.: Nonlinear model-predictive control with disturbance rejection property using adaptive neural networks. J. Frankl. Inst. 354, 5201–5220 (2017)MathSciNetMATH Vatankhah, B.; Farrokhi, M.: Nonlinear model-predictive control with disturbance rejection property using adaptive neural networks. J. Frankl. Inst. 354, 5201–5220 (2017)MathSciNetMATH
17.
Zurück zum Zitat Gerksic, S.; Juricic, D.; Strmcnik, S.; Matko, D.: Wiener model based nonlinear predictive control. Int. J. Syst. Sci. 31, 189–202 (2000)MATH Gerksic, S.; Juricic, D.; Strmcnik, S.; Matko, D.: Wiener model based nonlinear predictive control. Int. J. Syst. Sci. 31, 189–202 (2000)MATH
18.
Zurück zum Zitat Salhi, S.; Kamoun, S.; Essounbouli, N.; Hamzaoui, A.: Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models. Int. J. Control 89, 611–622 (2016)MathSciNetMATH Salhi, S.; Kamoun, S.; Essounbouli, N.; Hamzaoui, A.: Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models. Int. J. Control 89, 611–622 (2016)MathSciNetMATH
19.
Zurück zum Zitat Greblicki, W.; Pawlak, M.: Hammerstein system identification with the nearest neighbor algorithm. IEEE Trans. Inf. Theory 63, 4746–4757 (2017)MathSciNetMATH Greblicki, W.; Pawlak, M.: Hammerstein system identification with the nearest neighbor algorithm. IEEE Trans. Inf. Theory 63, 4746–4757 (2017)MathSciNetMATH
20.
Zurück zum Zitat Al-Duawish, H.N.: Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arab. J. Sci. Eng. 36, 1269–1276 (2011) Al-Duawish, H.N.: Identification of Hammerstein models with known nonlinearity structure using particle swarm optimization. Arab. J. Sci. Eng. 36, 1269–1276 (2011)
21.
Zurück zum Zitat Jia, L.; Xiong, Q.; Li, F.: Correlation analysis method based SISO neuro-fuzzy Wiener model. J. Process Control 58, 73–89 (2017) Jia, L.; Xiong, Q.; Li, F.: Correlation analysis method based SISO neuro-fuzzy Wiener model. J. Process Control 58, 73–89 (2017)
22.
Zurück zum Zitat Tang, Y.; Han, Z.; Liu, F.; Guan, X.: Identification and control of nonlinear system based on Laguerre-ELM Wiener model. Commun. Nonlinear Sci. Numer. Simul. 38, 192–205 (2016)MathSciNet Tang, Y.; Han, Z.; Liu, F.; Guan, X.: Identification and control of nonlinear system based on Laguerre-ELM Wiener model. Commun. Nonlinear Sci. Numer. Simul. 38, 192–205 (2016)MathSciNet
23.
Zurück zum Zitat Ma, J.; Zhao, Z.; Han, Z.; Tang, Y.: Identification of Wiener model using least squares support vector machine optimized by adaptive particle swarm optimization. J. Control Autom. Electr. Syst. 26, 609–615 (2015) Ma, J.; Zhao, Z.; Han, Z.; Tang, Y.: Identification of Wiener model using least squares support vector machine optimized by adaptive particle swarm optimization. J. Control Autom. Electr. Syst. 26, 609–615 (2015)
24.
Zurück zum Zitat Aliskan, I.: Adaptive model predictive control for Wiener nonlinear systems. Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 361–377 (2019) Aliskan, I.: Adaptive model predictive control for Wiener nonlinear systems. Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 361–377 (2019)
25.
Zurück zum Zitat Sarhadi, P.; Rezaie, B.; Rahmani, Z.: Adaptive predictive control based on adaptive neuro-fuzzy inference system for a class of nonlinear industrial processes. J. Taiwan Inst. Chem. Eng. 61, 132–137 (2016) Sarhadi, P.; Rezaie, B.; Rahmani, Z.: Adaptive predictive control based on adaptive neuro-fuzzy inference system for a class of nonlinear industrial processes. J. Taiwan Inst. Chem. Eng. 61, 132–137 (2016)
26.
Zurück zum Zitat Kazemi, M.; Arefi, M.: A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017) Kazemi, M.; Arefi, M.: A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017)
27.
Zurück zum Zitat Norquay, S.; Palazoglu, A.; Romagnoli, J.: Model predictive control based on Wiener models. Chem. Eng. Sci. 53, 75–84 (1998) Norquay, S.; Palazoglu, A.; Romagnoli, J.: Model predictive control based on Wiener models. Chem. Eng. Sci. 53, 75–84 (1998)
28.
Zurück zum Zitat Ljung, L.: System Identification. Prentice Hall, New Jersey (1999)MATH Ljung, L.: System Identification. Prentice Hall, New Jersey (1999)MATH
29.
Zurück zum Zitat Almasi, O.; Fereshtehpoor, V.; Khooban, M.; Blaabjerg, F.: Analysis, control and design of a non-inverting buck-boost converter: a bump-less two-level T–S fuzzy PI control. ISA Trans. 67, 515–527 (2017) Almasi, O.; Fereshtehpoor, V.; Khooban, M.; Blaabjerg, F.: Analysis, control and design of a non-inverting buck-boost converter: a bump-less two-level T–S fuzzy PI control. ISA Trans. 67, 515–527 (2017)
30.
Zurück zum Zitat Chua, K.; Lim, Y.; Morris, S.: A novel fuzzy control algorithm for reducing the peak demands using energy storage system. Energy 122, 265–273 (2017) Chua, K.; Lim, Y.; Morris, S.: A novel fuzzy control algorithm for reducing the peak demands using energy storage system. Energy 122, 265–273 (2017)
31.
Zurück zum Zitat Bakdi, A.; Hentout, A.; Boutami, H.; Maoudj, A.; Hachour, O.; Bouzouia, B.: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Syst. 89, 95–109 (2017) Bakdi, A.; Hentout, A.; Boutami, H.; Maoudj, A.; Hachour, O.; Bouzouia, B.: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Syst. 89, 95–109 (2017)
32.
Zurück zum Zitat Abedini, M.; Mahmodi, E.; Mousavi, M.; Chaharmahali, I.: A novel fuzzy PI controller for improving autonomous network by considering uncertainty. Sustain. Energy Grids Netw. 18, 1–11 (2019) Abedini, M.; Mahmodi, E.; Mousavi, M.; Chaharmahali, I.: A novel fuzzy PI controller for improving autonomous network by considering uncertainty. Sustain. Energy Grids Netw. 18, 1–11 (2019)
33.
Zurück zum Zitat Zaki, A.M.; El-Bardini, M.; Soliman, F.A.S.; Sharaf, M.M.: Embedded indirect adaptive fuzzy controller based on T–S fuzzy inverse model. Arab. J. Sci. Eng. 41, 3727–3737 (2016) Zaki, A.M.; El-Bardini, M.; Soliman, F.A.S.; Sharaf, M.M.: Embedded indirect adaptive fuzzy controller based on T–S fuzzy inverse model. Arab. J. Sci. Eng. 41, 3727–3737 (2016)
34.
Zurück zum Zitat Kurczyk, S.: Pawelczyk, M: Fuzzy control for semi-active vehicle suspension. J. Low Freq. Noise Vib. Active Control 32, 217–225 (2013) Kurczyk, S.: Pawelczyk, M: Fuzzy control for semi-active vehicle suspension. J. Low Freq. Noise Vib. Active Control 32, 217–225 (2013)
35.
Zurück zum Zitat Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.: Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 117, 257–274 (2018) Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.: Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 117, 257–274 (2018)
36.
Zurück zum Zitat Chen, G.; Pham, T.: Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. CRC Press, New York (2000) Chen, G.; Pham, T.: Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. CRC Press, New York (2000)
37.
Zurück zum Zitat Misir, D.; Malki, H.; Chen, G.: Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Syst. 79, 297–314 (1996)MathSciNetMATH Misir, D.; Malki, H.; Chen, G.: Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Syst. 79, 297–314 (1996)MathSciNetMATH
38.
Zurück zum Zitat Kumar, V.; Mittal, A.P.; Singh, R.: Stability analysis of parallel fuzzy P + fuzzy I + fuzzy D control systems. Int. J. Autom. Comput. 10, 91–98 (2013) Kumar, V.; Mittal, A.P.; Singh, R.: Stability analysis of parallel fuzzy P + fuzzy I + fuzzy D control systems. Int. J. Autom. Comput. 10, 91–98 (2013)
39.
Zurück zum Zitat Tötterman, S.; Toivonen, H.T.: Support vector method for identification of Wiener models. J. Process Control 19, 1174–1181 (2009) Tötterman, S.; Toivonen, H.T.: Support vector method for identification of Wiener models. J. Process Control 19, 1174–1181 (2009)
40.
Zurück zum Zitat Zou, Z.; Yu, M.; Wang, Z.; Liu, X.; Guo, Y.; Zhang, F.; Guo, N.: Nonlinear model algorithmic control of a pH neutralization process. Chin. J. Chem. Eng. 21, 395–400 (2013) Zou, Z.; Yu, M.; Wang, Z.; Liu, X.; Guo, Y.; Zhang, F.; Guo, N.: Nonlinear model algorithmic control of a pH neutralization process. Chin. J. Chem. Eng. 21, 395–400 (2013)
41.
Zurück zum Zitat Yuan, P.; Zhang, B.; Mao, Z.: A self-tuning control method for Wiener nonlinear systems and its application to process control problems. Chin. J. Chem. Eng. 25, 193–201 (2017) Yuan, P.; Zhang, B.; Mao, Z.: A self-tuning control method for Wiener nonlinear systems and its application to process control problems. Chin. J. Chem. Eng. 25, 193–201 (2017)
42.
Zurück zum Zitat Vörös, J.: Identification of nonlinear cascade systems with noninvertible piecewise linear input and backlash output nonlinearities. J. Electr. Eng. 67, 279–285 (2016) Vörös, J.: Identification of nonlinear cascade systems with noninvertible piecewise linear input and backlash output nonlinearities. J. Electr. Eng. 67, 279–285 (2016)
43.
Zurück zum Zitat Wachel, P.; Mzyk, G.: Direct identification of the linear block in Wiener system. Int. J. Adapt. Control Signal Process. 30, 93–105 (2016)MathSciNetMATH Wachel, P.; Mzyk, G.: Direct identification of the linear block in Wiener system. Int. J. Adapt. Control Signal Process. 30, 93–105 (2016)MathSciNetMATH
44.
Zurück zum Zitat Ding, F.; Liu, X.; Liu, M.: The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Frankl. Inst. 353, 1518–1526 (2016)MathSciNetMATH Ding, F.; Liu, X.; Liu, M.: The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Frankl. Inst. 353, 1518–1526 (2016)MathSciNetMATH
45.
Zurück zum Zitat Hagglund, T.; Astrom, K.: Revisiting the Ziegler-Nichols tuning rules for the PI control. Asian J. Control 4, 364–380 (2002) Hagglund, T.; Astrom, K.: Revisiting the Ziegler-Nichols tuning rules for the PI control. Asian J. Control 4, 364–380 (2002)
46.
Zurück zum Zitat Kazemi, M.; Arefi, M.: Nonlinear generalized minimum variance control and control performance assessment of nonlinear systems based on a Wiener model. Trans. Inst. Measur. Control 40, 1538–1553 (2017) Kazemi, M.; Arefi, M.: Nonlinear generalized minimum variance control and control performance assessment of nonlinear systems based on a Wiener model. Trans. Inst. Measur. Control 40, 1538–1553 (2017)
Metadaten
Titel
A Novel Fuzzy PI Control Approach for Nonlinear Processes
verfasst von
Ibrahim Aliskan
Publikationsdatum
14.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 8/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04463-0

Weitere Artikel der Ausgabe 8/2020

Arabian Journal for Science and Engineering 8/2020 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

Blockchain-Based Privacy-Aware Pseudonym Management Framework for Vehicular Networks

Research Article-Computer Engineering and Computer Science

An Ontology-Based Security Risk Management Model for Information Systems

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.