Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2022

A Novel Hash Function Based on Multi-iterative Parallel Structure

verfasst von: Yijun Yang, Xiayan Zhang

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Hash functions serve as a fundamental cryptographic primitives and are used in numerous security fields, such as cloud audit, digital signature, block chain and random number generation. Recent years, cryptographers have long delved into parallel hash functions to design more efficient cryptographic primitives. This paper proposes a multi-iterative parallel hash function. Moreover, inside this parallel structure, a four branch parallel compression structure is proposed to accelerate message diffusion. Simulation results show the proposed hash scheme has great performance on both efficiency and security.
Literatur
1.
Zurück zum Zitat Boer, B. D., & Bosselaers, A. (1993). Collisions for the compression function of MD5. Eurocrypt, 765, 293–304. MATH Boer, B. D., & Bosselaers, A. (1993). Collisions for the compression function of MD5. Eurocrypt, 765, 293–304. MATH
2.
Zurück zum Zitat Dobbertin, H. (1996). Cryptanalysis of MD5 compress. Presented at the rump session of Eurocrypt 1996. Dobbertin, H. (1996). Cryptanalysis of MD5 compress. Presented at the rump session of Eurocrypt 1996.
3.
Zurück zum Zitat Wang, X., Yin, Y., & Yu, H. (2005). Finding collisions in the full SHA-1. Lecture Notes in Computer ScienceIn V. Shoup (Ed.), Advances in cryptology-CRYPTO2005 (Vol. 3621, pp. 17–36). Springer. Wang, X., Yin, Y., & Yu, H. (2005). Finding collisions in the full SHA-1. Lecture Notes in Computer ScienceIn V. Shoup (Ed.), Advances in cryptology-CRYPTO2005 (Vol. 3621, pp. 17–36). Springer.
4.
Zurück zum Zitat Chabaud, F., & Joux, A. (1998). Differential collisions in SHA-0. Crypto, 1462, 56–71. MATH Chabaud, F., & Joux, A. (1998). Differential collisions in SHA-0. Crypto, 1462, 56–71. MATH
5.
Zurück zum Zitat Chu, C. K., Zhu, W. T., Han, J., Liu, J. K., Xu, J., & Zhou, J. (2013). Security concerns in popular cloud storage services. IEEE Pervasive Computing, 12(4), 50–57. CrossRef Chu, C. K., Zhu, W. T., Han, J., Liu, J. K., Xu, J., & Zhou, J. (2013). Security concerns in popular cloud storage services. IEEE Pervasive Computing, 12(4), 50–57. CrossRef
6.
7.
Zurück zum Zitat Damgard, I. B. (1990). A design principle for hash functions. Advances in Cryptology CRYPTO 89, 435, 416–427. MathSciNetCrossRef Damgard, I. B. (1990). A design principle for hash functions. Advances in Cryptology CRYPTO 89, 435, 416–427. MathSciNetCrossRef
8.
Zurück zum Zitat Liang, J., & Lai, X. (2005). Improved collision attack on hash function MD5. In: Technical Report. Liang, J., & Lai, X. (2005). Improved collision attack on hash function MD5. In: Technical Report.
9.
Zurück zum Zitat Sasaki, Y., Naito, Y., Kunihiro, N., & Ohta, K. (2007). Improved collision attacks on MD4 and MD5. IEICE Transactions, 90-A(1), 37–47. Sasaki, Y., Naito, Y., Kunihiro, N., & Ohta, K. (2007). Improved collision attacks on MD4 and MD5. IEICE Transactions, 90-A(1), 37–47.
10.
Zurück zum Zitat Stevens, M. (2013). New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Advances in Cryptology-Eurocrypt 2013, Lecture Notes in Computer Science, 7881, 245–261. Stevens, M. (2013). New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Advances in Cryptology-Eurocrypt 2013, Lecture Notes in Computer Science, 7881, 245–261.
11.
Zurück zum Zitat Wang, X., Feng, D., Lai, X., & Yu, H. (2004). Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199. Wang, X., Feng, D., Lai, X., & Yu, H. (2004). Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199.
12.
Zurück zum Zitat Li, W., Gao, Z., & Gu, D. (2017). Security analysis of whirlpool hash function in the cloud of things. KSII Transactions on Internet and Information Systems., 11(1), 536–551. Li, W., Gao, Z., & Gu, D. (2017). Security analysis of whirlpool hash function in the cloud of things. KSII Transactions on Internet and Information Systems., 11(1), 536–551.
13.
Zurück zum Zitat Mendel, F., Nad, T., & Schlaffer, M. (2013). Improving local collisions: New attacks on reduced SHA-256. Lecture Notes in Computer ScienceIn T. Johansson & P. Nguyen (Eds.), Advances in cryptology-EUROCRYPT2013 (Vol. 7881, pp. 262–278). Springer. Mendel, F., Nad, T., & Schlaffer, M. (2013). Improving local collisions: New attacks on reduced SHA-256. Lecture Notes in Computer ScienceIn T. Johansson & P. Nguyen (Eds.), Advances in cryptology-EUROCRYPT2013 (Vol. 7881, pp. 262–278). Springer.
14.
Zurück zum Zitat Lee, J., & Hong, D. (2012). Collision resistance of the JH hash function. IEEE Transactions of Information Theory, 58(3), 1992–1995. MathSciNetCrossRef Lee, J., & Hong, D. (2012). Collision resistance of the JH hash function. IEEE Transactions of Information Theory, 58(3), 1992–1995. MathSciNetCrossRef
15.
Zurück zum Zitat Lucks, S. (2005). A failure-friendly design principle for hash functions. Asiacrypt, 3788, 474–494. MathSciNetMATH Lucks, S. (2005). A failure-friendly design principle for hash functions. Asiacrypt, 3788, 474–494. MathSciNetMATH
16.
Zurück zum Zitat Biham, E., & Dunkelman, O. (2007). A framework for iterative hash functions—HAIFA. Cryptology ePrint Archive: Report 2007/278. Biham, E., & Dunkelman, O. (2007). A framework for iterative hash functions—HAIFA. Cryptology ePrint Archive: Report 2007/278.
18.
Zurück zum Zitat Je, S. T., Azman, S., & Amir, A. (2015). Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dynamics, 81, 1067–1079. CrossRef Je, S. T., Azman, S., & Amir, A. (2015). Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dynamics, 81, 1067–1079. CrossRef
19.
Zurück zum Zitat Wang, Y., Wong, K. W., & Xiao, D. (2011). Parallel hash function construction based on coupled map lattices. Communications in Nonlinear Science and Numerical Simulation, 16(7), 2810–2821. MathSciNetCrossRef Wang, Y., Wong, K. W., & Xiao, D. (2011). Parallel hash function construction based on coupled map lattices. Communications in Nonlinear Science and Numerical Simulation, 16(7), 2810–2821. MathSciNetCrossRef
20.
Zurück zum Zitat Nouri, M., Safarinia, M., & Pourmahdi, P. (2014). The parallel one-way hash function based on Chebyshev-Halley methods with variable parameter. International Journal of Computers Communications & Control, 9(1), 24–36. CrossRef Nouri, M., Safarinia, M., & Pourmahdi, P. (2014). The parallel one-way hash function based on Chebyshev-Halley methods with variable parameter. International Journal of Computers Communications & Control, 9(1), 24–36. CrossRef
21.
Zurück zum Zitat Yang, Y., Chen, F., Chen, J., Zhang, Y., & Yung, K. L. (2019). A secure hash function based on feedback iterative structure. Enterprise Information Systems., 13(3), 281–302. CrossRef Yang, Y., Chen, F., Chen, J., Zhang, Y., & Yung, K. L. (2019). A secure hash function based on feedback iterative structure. Enterprise Information Systems., 13(3), 281–302. CrossRef
22.
Zurück zum Zitat Guesmi, R., Farah, M., & Kachouri, A. (2016). A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dynamics, 83, 1123–1136. MathSciNetCrossRef Guesmi, R., Farah, M., & Kachouri, A. (2016). A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dynamics, 83, 1123–1136. MathSciNetCrossRef
23.
24.
Zurück zum Zitat Ye, G., Zhao, H., & Chai, H. (2016). Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dynamics, 83, 2067–2077. MathSciNetCrossRef Ye, G., Zhao, H., & Chai, H. (2016). Chaotic image encryption algorithm using wave-line permutation and block diffusion. Nonlinear Dynamics, 83, 2067–2077. MathSciNetCrossRef
25.
Zurück zum Zitat Salvatore, P., Pedro, R., & Juan, A. M. (2016). Parallel d-pipeline: A Cuckoo hashing implementation for increased throughput. IEEE Transactions on Computers, 65(1), 326–331. MathSciNetCrossRef Salvatore, P., Pedro, R., & Juan, A. M. (2016). Parallel d-pipeline: A Cuckoo hashing implementation for increased throughput. IEEE Transactions on Computers, 65(1), 326–331. MathSciNetCrossRef
26.
Zurück zum Zitat Meysam, A., Shahram, J., & Narjes, N. (2016). A novel keyed parallel hashing scheme based on a new chaotic system. Chaos, Solitions and Fractals, 87, 216–225. CrossRef Meysam, A., Shahram, J., & Narjes, N. (2016). A novel keyed parallel hashing scheme based on a new chaotic system. Chaos, Solitions and Fractals, 87, 216–225. CrossRef
27.
Zurück zum Zitat Yang, Y., Chen, F., Sun, Z., Wang, S., & Chen, J. (2019). Secure and efficient parallel hash function construction and its application on cloud audit. Soft Computing, 23(18), 8907–8925. CrossRef Yang, Y., Chen, F., Sun, Z., Wang, S., & Chen, J. (2019). Secure and efficient parallel hash function construction and its application on cloud audit. Soft Computing, 23(18), 8907–8925. CrossRef
28.
Zurück zum Zitat Gauravaram, P., Millan, W., & Nieto, J. G. (2005). 3C—A provably secure pseudorandom function and message authentication code. A new mode of operation for cryptographic hash function. Annals of the New York Academy of Sciences, 2005(1), 491–494. Gauravaram, P., Millan, W., & Nieto, J. G. (2005). 3C—A provably secure pseudorandom function and message authentication code. A new mode of operation for cryptographic hash function. Annals of the New York Academy of Sciences, 2005(1), 491–494.
29.
Zurück zum Zitat Liskov, M. (2006). Constructing an ideal hash function from weak ideal compression functions. In The proceedings of the 13th international conference on selected areas in cryptography. Montreal, Canada. Springer-Verlag, 2006 (pp. 358–375). Liskov, M. (2006). Constructing an ideal hash function from weak ideal compression functions. In The proceedings of the 13th international conference on selected areas in cryptography. Montreal, Canada. Springer-Verlag, 2006 (pp. 358–375).
30.
Zurück zum Zitat Yang, Y., & Chen, F. (2017). Research on the hash function structures and its application. Wireless Personal Communications, 94(4), 2969–2985. CrossRef Yang, Y., & Chen, F. (2017). Research on the hash function structures and its application. Wireless Personal Communications, 94(4), 2969–2985. CrossRef
Metadaten
Titel
A Novel Hash Function Based on Multi-iterative Parallel Structure
verfasst von
Yijun Yang
Xiayan Zhang
Publikationsdatum
01.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09906-5