Zum Inhalt

2019 | OriginalPaper | Buchkapitel

A Novel Hybrid Sequential Model for Review-Based Rating Prediction

verfasst von : Yuanquan Lu, Wei Zhang, Pan Lu, Jianyong Wang

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, the online interactions between users and items become diverse, and may include textual reviews as well as numerical ratings. Reviews often express various opinions and sentiments, which can alleviate the sparsity problem of recommendations to some extent. In this paper, we address the personalized review-based rating prediction problem, namely, leveraging users’ historical reviews and corresponding ratings to predict their future ratings for items they have not interacted with before. While much effort has been devoted to this challenging problem mainly to investigate how to jointly model natural text and user personalization, most of them ignored sequential characteristics hidden in users’ review and rating sequences. To bridge this gap, we propose a novel Hybrid Review-based Sequential Model (HRSM) to capture future trajectories of users and items. This is achieved by feeding both users’ and items’ review sequences to a Long Short-Term Memory (LSTM) model that captures dynamics, in addition to incorporating a more traditional low-rank factorization that captures stationary states. The experimental results on real public datasets demonstrate that our model outperforms the state-of-the-art baselines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Literatur
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Metadaten
Titel
A Novel Hybrid Sequential Model for Review-Based Rating Prediction
verfasst von
Yuanquan Lu
Wei Zhang
Pan Lu
Jianyong Wang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-16148-4_12