Skip to main content
Erschienen in:

16.06.2024

A Novel Indirect Approach for Modelling a Class of Fractional-Order System in Complex Domain

verfasst von: Wandarisa Sungoh, Jaydeep Swarnakar

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 10/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a method is presented to obtain the discrete model of the fractional-order system (FOS) in complex \(z\)-domain. An indirect modelling approach has been implemented for the proposed work. Initially, a stable first-order discrete-time operator is formulated by interpolating Tustin and reduced Tick integrators. Later, the fractional-order differentiator has been modelled in two stages. The first stage employs Oustaloup method to obtain the approximate model of the fractional-order differentiator (FOD) in \(s\)-domain. The second stage uses the newly formulated operator to discretize the \(s\)-domain model for attaining stable discrete rational model of the FOD in \(z\)-domain. The efficacy of the proposed method over some of the prevailing methods has been presented with appropriate simulation outcomes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat M.A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electr. Eng. 90, 455–467 (2008)CrossRef M.A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electr. Eng. 90, 455–467 (2008)CrossRef
2.
Zurück zum Zitat M.A. Al-Alaoui, Class of digital integrators and differentiators. IET Signal Proc. 5, 251–260 (2011)CrossRef M.A. Al-Alaoui, Class of digital integrators and differentiators. IET Signal Proc. 5, 251–260 (2011)CrossRef
3.
Zurück zum Zitat M.A. Al-Alaoui, Novel approach to designing digital differentiators. Electron. Lett. 28, 1376–1378 (1992)CrossRef M.A. Al-Alaoui, Novel approach to designing digital differentiators. Electron. Lett. 28, 1376–1378 (1992)CrossRef
4.
Zurück zum Zitat M.A. Al-Alaoui, Novel digital integrator and differentiator. Electron. Lett. 29, 376–378 (1993)CrossRef M.A. Al-Alaoui, Novel digital integrator and differentiator. Electron. Lett. 29, 376–378 (1993)CrossRef
5.
Zurück zum Zitat M. A. Al-Alaoui, Simulation and discretization of fractional order systems, IEEE Games Entertainment Media Conference (GEM), 249–255 (2009) M. A. Al-Alaoui, Simulation and discretization of fractional order systems, IEEE Games Entertainment Media Conference (GEM), 249–255 (2009)
6.
Zurück zum Zitat I. Birs, C. Ionescu, I. Nascu, C. Muresan, A comparison between FOIMC and FOPI controllers for a submerged robot, In Proceedings of 2021 IEEE 25th International Conference on System Theory, Control and Computing (ICSTCC), Lasi, Romania, (2021), pp. 166–171 I. Birs, C. Ionescu, I. Nascu, C. Muresan, A comparison between FOIMC and FOPI controllers for a submerged robot, In Proceedings of 2021 IEEE 25th International Conference on System Theory, Control and Computing (ICSTCC), Lasi, Romania, (2021), pp. 166–171
7.
Zurück zum Zitat M. Cai, C. Li, Numerical approaches to fractional integrals and derivatives: A review. Mathematics 8(1), 43 (2020)MathSciNetCrossRef M. Cai, C. Li, Numerical approaches to fractional integrals and derivatives: A review. Mathematics 8(1), 43 (2020)MathSciNetCrossRef
8.
Zurück zum Zitat C. A. Calderon, R. Sarango, Realization and comparative analysis of fractional order controllers for different discretization methods. In Proceedings of 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curico, Chile, (2022) pp. 1–6 C. A. Calderon, R. Sarango, Realization and comparative analysis of fractional order controllers for different discretization methods. In Proceedings of 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curico, Chile, (2022) pp. 1–6
9.
Zurück zum Zitat N.K. Chaudhary, D. Sati, M.C. Bhatt, V. Bhandari, Design of digital differentiators using interpolation and model order reduction technique. Int. J. Emerg. Technol. Eng. Research (IJETER) 4, 263–266 (2016) N.K. Chaudhary, D. Sati, M.C. Bhatt, V. Bhandari, Design of digital differentiators using interpolation and model order reduction technique. Int. J. Emerg. Technol. Eng. Research (IJETER) 4, 263–266 (2016)
10.
Zurück zum Zitat D. Chouaibi, W. Chagra, Fractional predictive control of multi-input multi-output systems. In Proceedings of 2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC), 240–245, (2021) D. Chouaibi, W. Chagra, Fractional predictive control of multi-input multi-output systems. In Proceedings of 2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC), 240–245, (2021)
11.
Zurück zum Zitat R.K.H. Galvao, M.C.M. Teixeria, E. Assuncao, H.M. Paiva, S. Hadjiloucas, Identification of fractional-order transfer functions using exponentially modulated signals with arbitrary excitation waveforms. ISA Trans. 103, 10–18 (2020)CrossRef R.K.H. Galvao, M.C.M. Teixeria, E. Assuncao, H.M. Paiva, S. Hadjiloucas, Identification of fractional-order transfer functions using exponentially modulated signals with arbitrary excitation waveforms. ISA Trans. 103, 10–18 (2020)CrossRef
12.
Zurück zum Zitat B. Goodwine, Fractional-order dynamics in large scale control systems, In Proceedings of the 31st Mediterranean Conference on Control and Automation (MED), Limassol, Cyprus, (2023) pp. 747–752 B. Goodwine, Fractional-order dynamics in large scale control systems, In Proceedings of the 31st Mediterranean Conference on Control and Automation (MED), Limassol, Cyprus, (2023) pp. 747–752
13.
Zurück zum Zitat O.P. Goswami, T.K. Rawat, D.K. Upadhyay, A novel approach for the design of optimum IIR differentiators using fractional interpolation. Circuits Systems Signal Process. 39, 1688–1698 (2020)CrossRef O.P. Goswami, T.K. Rawat, D.K. Upadhyay, A novel approach for the design of optimum IIR differentiators using fractional interpolation. Circuits Systems Signal Process. 39, 1688–1698 (2020)CrossRef
14.
Zurück zum Zitat O.P. Goswami, T.K. Rawat, D.K. Upadhyay, L1-norm-based optimal design of digital differentiator using multiverse optimization. Circuits Systems Signal Process. 41(8), 4707–4715 (2022)CrossRef O.P. Goswami, T.K. Rawat, D.K. Upadhyay, L1-norm-based optimal design of digital differentiator using multiverse optimization. Circuits Systems Signal Process. 41(8), 4707–4715 (2022)CrossRef
15.
Zurück zum Zitat O.P. Goswami, A. Shukla, M. Kumar, Optimal design and low noise realization of digital differentiator. J. Electr. Eng. 73(5), 332–336 (2022) O.P. Goswami, A. Shukla, M. Kumar, Optimal design and low noise realization of digital differentiator. J. Electr. Eng. 73(5), 332–336 (2022)
16.
Zurück zum Zitat Z. Gu, F. Li, F. Fang, G. Zhang, A novel retinex-based fractional-order variational model for images with severely low light. IEEE Trans. Image Process. 29, 3239–3253 (2020)MathSciNetCrossRef Z. Gu, F. Li, F. Fang, G. Zhang, A novel retinex-based fractional-order variational model for images with severely low light. IEEE Trans. Image Process. 29, 3239–3253 (2020)MathSciNetCrossRef
17.
Zurück zum Zitat M. Gupta, P. Varshney, G. S. Visweswaran, B. Kumar, Novel digital differentiator and corresponding fractional order differentiator models, In Proceedings of 2008 International Conference on Signal Processing and Multimedia Applications (SIGMAP), 47–54 (2008) M. Gupta, P. Varshney, G. S. Visweswaran, B. Kumar, Novel digital differentiator and corresponding fractional order differentiator models, In Proceedings of 2008 International Conference on Signal Processing and Multimedia Applications (SIGMAP), 47–54 (2008)
18.
Zurück zum Zitat M. Gupta, R. Yadav, Approximations of higher-order fractional differentiators and integrators using indirect discretization. Turk. J. Electr. Eng. Comput. Sci. 23, 666–680 (2015)CrossRef M. Gupta, R. Yadav, Approximations of higher-order fractional differentiators and integrators using indirect discretization. Turk. J. Electr. Eng. Comput. Sci. 23, 666–680 (2015)CrossRef
19.
Zurück zum Zitat R. D. Keyser, C. I. Muresan, Analysis of a new continuous-to-discrete-time operator for the approximation of fractional order systems, In Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, (2016) pp. 003211–003216 R. D. Keyser, C. I. Muresan, Analysis of a new continuous-to-discrete-time operator for the approximation of fractional order systems, In Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, (2016) pp. 003211–003216
20.
Zurück zum Zitat R. Kar, Optimal designs of analogue and digital fractional order filters for signal processing applications. CSI Trans. on ICT 7, 175–180 (2019)CrossRef R. Kar, Optimal designs of analogue and digital fractional order filters for signal processing applications. CSI Trans. on ICT 7, 175–180 (2019)CrossRef
21.
Zurück zum Zitat K. Kothari, U.V. Mehta, R. Prasad, Fractional-order system modeling and its applications. J. Eng. Sci. Technol. Review 12(6), 1–10 (2019)CrossRef K. Kothari, U.V. Mehta, R. Prasad, Fractional-order system modeling and its applications. J. Eng. Sci. Technol. Review 12(6), 1–10 (2019)CrossRef
22.
Zurück zum Zitat B. T. Krishna, Design of fractional order differintegrators using reduced order s to z transforms, In Proceedings of 2015 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, (2015) pp. 469–473 B. T. Krishna, Design of fractional order differintegrators using reduced order s to z transforms, In Proceedings of 2015 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, (2015) pp. 469–473
23.
Zurück zum Zitat F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator using second-order s-to-z transform and signal modeling. Circuits Systems Signal Process. 34, 869–1891 (2015)MathSciNetCrossRef F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator using second-order s-to-z transform and signal modeling. Circuits Systems Signal Process. 34, 869–1891 (2015)MathSciNetCrossRef
24.
Zurück zum Zitat M.F.M. Lima, J.A.T. Machado, M. Crisostomo, Experimental signal analysis of robot impacts in a fractional calculus perspective. J. Advanced Computational Intell. Intell. Inform. 11, 1079–1085 (2007)CrossRef M.F.M. Lima, J.A.T. Machado, M. Crisostomo, Experimental signal analysis of robot impacts in a fractional calculus perspective. J. Advanced Computational Intell. Intell. Inform. 11, 1079–1085 (2007)CrossRef
25.
Zurück zum Zitat S. A. Mehta, D. M. Adhyaru, M. Vadsola, Comparative study for various fractional order system realization methods, In Proceedings of Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, (2013) pp. 1–4 S. A. Mehta, D. M. Adhyaru, M. Vadsola, Comparative study for various fractional order system realization methods, In Proceedings of Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, (2013) pp. 1–4
26.
Zurück zum Zitat N. Mijat, D. Jurisic, G.S. Moschytz, Analog modeling of fractional-order elements: a classical circuit theory approach. IEEE Access 9, 110309–110331 (2021)CrossRef N. Mijat, D. Jurisic, G.S. Moschytz, Analog modeling of fractional-order elements: a classical circuit theory approach. IEEE Access 9, 110309–110331 (2021)CrossRef
27.
Zurück zum Zitat K.B. Oldham, J. Spanier, The Fractional calculus: Theory and applications of differentiation and integration to arbitrary order (Academic Press, New York, 1974) K.B. Oldham, J. Spanier, The Fractional calculus: Theory and applications of differentiation and integration to arbitrary order (Academic Press, New York, 1974)
28.
Zurück zum Zitat M.D. Ortigueira, An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. 8(3), 19–26 (2008)CrossRef M.D. Ortigueira, An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. 8(3), 19–26 (2008)CrossRef
29.
Zurück zum Zitat A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex non integer differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47(1), 25–39 (2000)CrossRef A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex non integer differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47(1), 25–39 (2000)CrossRef
30.
31.
Zurück zum Zitat S. Pooseh, R. Almeida, D.F.M. Torres, Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698–712 (2013)MathSciNetCrossRef S. Pooseh, R. Almeida, D.F.M. Torres, Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698–712 (2013)MathSciNetCrossRef
32.
Zurück zum Zitat K. Rajasekhar, Low frequency applicable fractional order differintegrators design based on novel interpolated transform, In Proceedings of IEEE International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), Odisha, (2022) pp. 1–5 K. Rajasekhar, Low frequency applicable fractional order differintegrators design based on novel interpolated transform, In Proceedings of IEEE International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), Odisha, (2022) pp. 1–5
33.
Zurück zum Zitat K. Rajasekhar, B. T. Krishna, Design of novel fractional order differintegrators at low frequency region, In Proceedings of 2020 IEEE International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, (2020) pp. 322–327 K. Rajasekhar, B. T. Krishna, Design of novel fractional order differintegrators at low frequency region, In Proceedings of 2020 IEEE International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, (2020) pp. 322–327
34.
Zurück zum Zitat S. Rastogi, P. Bhatt, R. Gowri, Design and simulation of first order microwave digital differentiator & trapezoidal integrator, in Proceedings of 5th International conference on information systems and computer networks (ISCON), Mathura, India, (2021) pp. 1–5 S. Rastogi, P. Bhatt, R. Gowri, Design and simulation of first order microwave digital differentiator & trapezoidal integrator, in Proceedings of 5th International conference on information systems and computer networks (ISCON), Mathura, India, (2021) pp. 1–5
35.
Zurück zum Zitat M. Rustemovic, T. Uzunovic, Comparison of different methods for digital fractional-order differentiator and integrator design, In Proceedings of 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, (2018) pp. 1–6 M. Rustemovic, T. Uzunovic, Comparison of different methods for digital fractional-order differentiator and integrator design, In Proceedings of 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, (2018) pp. 1–6
36.
Zurück zum Zitat A.M. Schneider, J.T. Kaneshige, F.D. Groutage, Higher order s-to-z mapping functions and their application in digitizing continuous-time filters. IEEE 79, 1661–1674 (1991)CrossRef A.M. Schneider, J.T. Kaneshige, F.D. Groutage, Higher order s-to-z mapping functions and their application in digitizing continuous-time filters. IEEE 79, 1661–1674 (1991)CrossRef
37.
Zurück zum Zitat R. Stanislawski, M. Rydel, K.J. Latawiec, New implementation of discrete-time fractional-order PI controller by use of model order reduction methods, in Advanced, Contemporary Control. ed. by A. Bartoszewicz, J. Kabziński, J. Kacprzyk (Advances in Intelligent Systems and Computing, Springer, Cham, 2020), pp.1199–1209CrossRef R. Stanislawski, M. Rydel, K.J. Latawiec, New implementation of discrete-time fractional-order PI controller by use of model order reduction methods, in Advanced, Contemporary Control. ed. by A. Bartoszewicz, J. Kabziński, J. Kacprzyk (Advances in Intelligent Systems and Computing, Springer, Cham, 2020), pp.1199–1209CrossRef
38.
Zurück zum Zitat J. Swarnakar, W. Sungoh, Rational approximation of fractional-order system with multiple fractional powered terms—a comparative study, in Intelligent Computing, Information and Control Systems. ed. by A. Pandian, K. Ntalianis, R. Palanisamy (Advances in Intelligent Systems and Computing, Springer, Cham, 2020), pp.30–37CrossRef J. Swarnakar, W. Sungoh, Rational approximation of fractional-order system with multiple fractional powered terms—a comparative study, in Intelligent Computing, Information and Control Systems. ed. by A. Pandian, K. Ntalianis, R. Palanisamy (Advances in Intelligent Systems and Computing, Springer, Cham, 2020), pp.30–37CrossRef
39.
Zurück zum Zitat A. V. Tare, M. M. Joshi, V. A. Vyawahare, Discrete approximation methods for linear fractional-order systems: a comparative study, In Proceedings of 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, India, (2014) 105–110 A. V. Tare, M. M. Joshi, V. A. Vyawahare, Discrete approximation methods for linear fractional-order systems: a comparative study, In Proceedings of 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, India, (2014) 105–110
40.
Zurück zum Zitat G.S. Visweswaran, P. Varshney, M. Gupta, New approach to realize fractional power in z-domain at low frequency. IEEE Trans. Circuits Syst. II Express Briefs 58, 179–183 (2011) G.S. Visweswaran, P. Varshney, M. Gupta, New approach to realize fractional power in z-domain at low frequency. IEEE Trans. Circuits Syst. II Express Briefs 58, 179–183 (2011)
41.
Zurück zum Zitat F. Xie, Z. Yang, C. Yang, Y. Chen, B. Zhang, D. Qiu, Construction and experimental realization of the fractional-order transformer by Oustaloup rational approximation method. IEEE Trans. Circuits Syst. II Express Briefs 7, 1550–1554 (2023) F. Xie, Z. Yang, C. Yang, Y. Chen, B. Zhang, D. Qiu, Construction and experimental realization of the fractional-order transformer by Oustaloup rational approximation method. IEEE Trans. Circuits Syst. II Express Briefs 7, 1550–1554 (2023)
42.
Zurück zum Zitat Z. Xu, J. Wu, Y. Wang, Fractional order modeling and internal model control of dielectric elastomer actuator. In Proceedings of 2022 IEEE 13th Asian Control Conference (ASCC), Jeju Island, Korea, (2022) pp. 1068–1072 Z. Xu, J. Wu, Y. Wang, Fractional order modeling and internal model control of dielectric elastomer actuator. In Proceedings of 2022 IEEE 13th Asian Control Conference (ASCC), Jeju Island, Korea, (2022) pp. 1068–1072
43.
Zurück zum Zitat A. Yuce, N. Tan, On the approximate inverse Laplace transform of the transfer function with a single fractional order. Trans. Inst. Meas. Control. 43, 1376–1384 (2021)CrossRef A. Yuce, N. Tan, On the approximate inverse Laplace transform of the transfer function with a single fractional order. Trans. Inst. Meas. Control. 43, 1376–1384 (2021)CrossRef
44.
Zurück zum Zitat F. Zhang, C. Yang, X. Zhou, W. Gui, Optimal setting and control strategy for industrial process based on discrete-time fractional-order. IEEE Access 7, 47747–47761 (2019)CrossRef F. Zhang, C. Yang, X. Zhou, W. Gui, Optimal setting and control strategy for industrial process based on discrete-time fractional-order. IEEE Access 7, 47747–47761 (2019)CrossRef
45.
Zurück zum Zitat F. Zouad, K. Kemih, H. Hamiche, A new secure communication scheme using fractional order delayed chaotic system: design and electronics circuit simulation. Analog Integr. Circ. Sig. Process 99, 619–632 (2019)CrossRef F. Zouad, K. Kemih, H. Hamiche, A new secure communication scheme using fractional order delayed chaotic system: design and electronics circuit simulation. Analog Integr. Circ. Sig. Process 99, 619–632 (2019)CrossRef
Metadaten
Titel
A Novel Indirect Approach for Modelling a Class of Fractional-Order System in Complex Domain
verfasst von
Wandarisa Sungoh
Jaydeep Swarnakar
Publikationsdatum
16.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 10/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02737-8