Skip to main content

2025 | OriginalPaper | Buchkapitel

A Novel Interdisciplinarity Model Towards Inter-domain Information Pairing

verfasst von : Nicolas Douard, Ahmed Samet, George Giakos, Denis Cavallucci

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study introduces an interdisciplinary prediction framework as part of a novel approach that integrates the Inventive Design Method (IDM), Topic Modeling, and Generative AI to foster innovation across academic fields. Identifying interdisciplinary connections is essential for solving complex, multi-domain problems. Our research uses a supervised machine learning classifier to identify interdisciplinary documents within the Semantic Scholar corpus, extracting latent insights. The Text Convolutional Neural Network model performed best, achieving an F1 score of 0.80. We find that approximately 25% of human knowledge is interdisciplinary. This framework helps create comprehensive knowledge maps across multiple domains, promoting innovation through effective cross-domain knowledge transfer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Navigating the knowledge network: how inter-domain information pairing and generative AI can enable rapid problem-solving. In: TFC (2023) Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Navigating the knowledge network: how inter-domain information pairing and generative AI can enable rapid problem-solving. In: TFC (2023)
2.
Zurück zum Zitat Cavallucci, D.: From TRIZ to inventive design method (IDM): towards a formalization of inventive practices in R &D departments (2012) Cavallucci, D.: From TRIZ to inventive design method (IDM): towards a formalization of inventive practices in R &D departments (2012)
4.
Zurück zum Zitat Lo, K., Wang, L.L., Neumann, M., Kinney, R.M., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Annual Meeting of the Association for Computational Linguistics (2020) Lo, K., Wang, L.L., Neumann, M., Kinney, R.M., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Annual Meeting of the Association for Computational Linguistics (2020)
5.
Zurück zum Zitat Wagner, C.S., et al.: Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature. J. Informetr. 5, 14–26 (2011)CrossRef Wagner, C.S., et al.: Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature. J. Informetr. 5, 14–26 (2011)CrossRef
6.
Zurück zum Zitat Altshuller, G.S., Shulyak, L.A.: And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center (1996) Altshuller, G.S., Shulyak, L.A.: And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center (1996)
7.
Zurück zum Zitat Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Bridging two different domains to pair their inherent problem-solution text contents: applications to quantum sensing and biology. In: TFC (2022) Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Bridging two different domains to pair their inherent problem-solution text contents: applications to quantum sensing and biology. In: TFC (2022)
9.
Zurück zum Zitat Zhou, Y., Li, J., Chi, J., Tang, W., Zheng, Y.: Set-CNN: a text convolutional neural network based on semantic extension for short text classification. Knowl.-Based Syst. 257, 109948 (2022)CrossRef Zhou, Y., Li, J., Chi, J., Tang, W., Zheng, Y.: Set-CNN: a text convolutional neural network based on semantic extension for short text classification. Knowl.-Based Syst. 257, 109948 (2022)CrossRef
10.
Zurück zum Zitat Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)CrossRef Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)CrossRef
11.
Zurück zum Zitat Mayr, A., Hofner, B., Schmid, M.: The importance of knowing when to stop. Methods Inf. Med. 51, 178–186 (2012)CrossRef Mayr, A., Hofner, B., Schmid, M.: The importance of knowing when to stop. Methods Inf. Med. 51, 178–186 (2012)CrossRef
12.
Zurück zum Zitat Zou, H., Hastie, T.J.: Addendum: regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 768 (2005)MathSciNetCrossRef Zou, H., Hastie, T.J.: Addendum: regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 768 (2005)MathSciNetCrossRef
13.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)
14.
Zurück zum Zitat Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6 (2020)CrossRef Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6 (2020)CrossRef
Metadaten
Titel
A Novel Interdisciplinarity Model Towards Inter-domain Information Pairing
verfasst von
Nicolas Douard
Ahmed Samet
George Giakos
Denis Cavallucci
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_17