Skip to main content
Erschienen in: Journal of Computational Electronics 1/2018

08.09.2017

A novel model for graphene-based ion-sensitive field-effect transistor

verfasst von: Tarek El-Grour, Montasar Najari, Lassaad El-Mir

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene field-effect transistors (GFETs) are a promising candidate for sensing applications because of their high charge carrier mobility, high flexibility, biocompatibility and the ideal coupling between graphene charge carriers and surface potential. Coating graphene with sensing membrane fabricated high-k materials that can be used to pH sensing in aqueous solutions. This work presents the development of an analytical model for GFET-based pH sensor. This model can help in the investigation of the sensitivity mechanism related to the ambipolar characteristic of the GFET and theory of site binding and a Gouy–Chapman–Stern model. Finally, simulation results are compared with those extracted from experimental measurements and a good agreement is observed which validates the proposed analytical model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nature 6, 183 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nature 6, 183 (2007)CrossRef
2.
Zurück zum Zitat Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008)CrossRef Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008)CrossRef
3.
Zurück zum Zitat Wang, X., Zhi, L., Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)CrossRef Wang, X., Zhi, L., Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)CrossRef
4.
Zurück zum Zitat Ang, P.K., Chen, W., Wee, A.T., Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392 (2008)CrossRef Ang, P.K., Chen, W., Wee, A.T., Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392 (2008)CrossRef
5.
Zurück zum Zitat Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654 (2008)CrossRef Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654 (2008)CrossRef
6.
Zurück zum Zitat Ang, P.K., Chen, W., Wee, A.T.S., Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008)CrossRef Ang, P.K., Chen, W., Wee, A.T.S., Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008)CrossRef
7.
Zurück zum Zitat Her, J.L., Pan, T.M., Lin, W.Y., Wang, K.S., Li, L.J.: Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sens. Actuators B 182, 396 (2013)CrossRef Her, J.L., Pan, T.M., Lin, W.Y., Wang, K.S., Li, L.J.: Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sens. Actuators B 182, 396 (2013)CrossRef
8.
Zurück zum Zitat Heller, I., Chatoor, S., Mannik, J., Zevenbergen, M.A.G., Dekker, C., Lemay, S.G.: Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149 (2010)CrossRef Heller, I., Chatoor, S., Mannik, J., Zevenbergen, M.A.G., Dekker, C., Lemay, S.G.: Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149 (2010)CrossRef
9.
Zurück zum Zitat Fu, W., Nef, C., Knopfmacher, O., Tarasov, A., Weiss, M., Calame, M., Schönenberger, C.: Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011)CrossRef Fu, W., Nef, C., Knopfmacher, O., Tarasov, A., Weiss, M., Calame, M., Schönenberger, C.: Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011)CrossRef
10.
Zurück zum Zitat Noguera, C.: Physics and Chemistry at Oxide Surfaces. Cambridge University Press, Cambridge (1995) Noguera, C.: Physics and Chemistry at Oxide Surfaces. Cambridge University Press, Cambridge (1995)
11.
Zurück zum Zitat Jang, H.-J., Cho, W.-J.: Fabrication of high performance ion-sensitive field-effect transistors using an engineered sensing membrane for bio-sensor application. Jpn. J. Appl. Phys. 51, 02BL05 (2012)CrossRef Jang, H.-J., Cho, W.-J.: Fabrication of high performance ion-sensitive field-effect transistors using an engineered sensing membrane for bio-sensor application. Jpn. J. Appl. Phys. 51, 02BL05 (2012)CrossRef
12.
Zurück zum Zitat Tiwari, S.P., Zhang, X.H., Potscavage, W.J., Kippelen, B.: Low-voltage solution-processed n-channel organic field-effect transistors with high-k HfO\(_2\) gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 95, 223303 (2009)CrossRef Tiwari, S.P., Zhang, X.H., Potscavage, W.J., Kippelen, B.: Low-voltage solution-processed n-channel organic field-effect transistors with high-k HfO\(_2\) gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 95, 223303 (2009)CrossRef
13.
Zurück zum Zitat Oh, J.Y., Jang, H.-J., Cho, W.-J., Islam, M.S.: Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al\(_2\) O\(_3\)/SiO\(_2\) sensing membrane. Sens. Actuators B 171–172, 238 (2012)CrossRef Oh, J.Y., Jang, H.-J., Cho, W.-J., Islam, M.S.: Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al\(_2\) O\(_3\)/SiO\(_2\) sensing membrane. Sens. Actuators B 171–172, 238 (2012)CrossRef
14.
Zurück zum Zitat Kiani, et al.: Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8, 173 (2013)CrossRef Kiani, et al.: Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8, 173 (2013)CrossRef
15.
Zurück zum Zitat Yates, D.E., Levine, S., Healy, T.W.: Journal of the Chemical Society. Faraday Trans. I 70, 1807 (1974)CrossRef Yates, D.E., Levine, S., Healy, T.W.: Journal of the Chemical Society. Faraday Trans. I 70, 1807 (1974)CrossRef
16.
Zurück zum Zitat Siu, W., Cobbold, R.: Basic properties of the electrolyte—SiO\(_2\)—Si system: physical and theoretical aspects. IEEE Trans. Electron Devices 26, 1805–1815 (1979)CrossRef Siu, W., Cobbold, R.: Basic properties of the electrolyte—SiO\(_2\)—Si system: physical and theoretical aspects. IEEE Trans. Electron Devices 26, 1805–1815 (1979)CrossRef
17.
Zurück zum Zitat Chen, S., Bomer, J.G., Carlen, E.T., van den Berg, A.: Al\(_2\)O\(_3\)/silicon nanoISFET with near ideal Nernstian response. Nano Lett. 11, 2334–2341 (2011)CrossRef Chen, S., Bomer, J.G., Carlen, E.T., van den Berg, A.: Al\(_2\)O\(_3\)/silicon nanoISFET with near ideal Nernstian response. Nano Lett. 11, 2334–2341 (2011)CrossRef
18.
Zurück zum Zitat van Hal, R., Eijkel, J., Bergveld, P.: A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 69, 31–62 (1996)CrossRef van Hal, R., Eijkel, J., Bergveld, P.: A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 69, 31–62 (1996)CrossRef
19.
Zurück zum Zitat Tarasov, A., Wipf, M., Bedner, K., Kurz, J., Fu, W., Guzenko, V.A., Knopfmacher, O., Stoop, R.L., Calame, M., Schönenberger, C.: True reference nanosensor realized with silicon nanowires. Langmuir 28, 9899–9905 (2012)CrossRef Tarasov, A., Wipf, M., Bedner, K., Kurz, J., Fu, W., Guzenko, V.A., Knopfmacher, O., Stoop, R.L., Calame, M., Schönenberger, C.: True reference nanosensor realized with silicon nanowires. Langmuir 28, 9899–9905 (2012)CrossRef
20.
Zurück zum Zitat Khakifirooz, A., Nayfeh, O.M., Antoniadis, D.: A simple semiempirical short-channel MOSFET current-voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56(8), 1674–1680 (2009)CrossRef Khakifirooz, A., Nayfeh, O.M., Antoniadis, D.: A simple semiempirical short-channel MOSFET current-voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56(8), 1674–1680 (2009)CrossRef
21.
Zurück zum Zitat Rakheja, S., Wu, Y., Wang, H., Palacios, T.: An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors. IEEE Trans. Nanotechnol. 13(5), 1005–1013 (2014)CrossRef Rakheja, S., Wu, Y., Wang, H., Palacios, T.: An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors. IEEE Trans. Nanotechnol. 13(5), 1005–1013 (2014)CrossRef
22.
Zurück zum Zitat Massobrio, G., Grattarola, M., Mattioli, G., Mattioli, J.: ISFET-based biosensor modeling with SPICE. Sens. Actuators B Chem. 1(1–6), 401–407 (1990)CrossRef Massobrio, G., Grattarola, M., Mattioli, G., Mattioli, J.: ISFET-based biosensor modeling with SPICE. Sens. Actuators B Chem. 1(1–6), 401–407 (1990)CrossRef
23.
Zurück zum Zitat Moriconi, L., Niemeyer, D.: Graphene conductivity near the charge neutral point. Phys. Rev. B 84(19), 193401 (2011) Moriconi, L., Niemeyer, D.: Graphene conductivity near the charge neutral point. Phys. Rev. B 84(19), 193401 (2011)
24.
Zurück zum Zitat Van Hal, R.E.G., Eijkel, J.C.T., Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators 25, 201–205 (1995) Van Hal, R.E.G., Eijkel, J.C.T., Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators 25, 201–205 (1995)
25.
Zurück zum Zitat Shepherda*, L., Toumazoub, C.: Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sens. Actuators B 1, 468–473 (2005)CrossRef Shepherda*, L., Toumazoub, C.: Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sens. Actuators B 1, 468–473 (2005)CrossRef
26.
Zurück zum Zitat van Hal, R., Eijkel, J., Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key, parameters. Sens. Actuators B 24, 201–205 (1995)CrossRef van Hal, R., Eijkel, J., Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key, parameters. Sens. Actuators B 24, 201–205 (1995)CrossRef
27.
Zurück zum Zitat Fu, W., Nef, C., Tarasov, A., Wipf, R.S.M., Knopfmacher, O., Weiss, M., Calame, M., Schonenberger, C.: High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104 (2013)CrossRef Fu, W., Nef, C., Tarasov, A., Wipf, R.S.M., Knopfmacher, O., Weiss, M., Calame, M., Schonenberger, C.: High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104 (2013)CrossRef
28.
Zurück zum Zitat van Hal*, R.E.G., Eijkel, J.C.T., Bergveld, P.: A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 68, 31–62 (1996)CrossRef van Hal*, R.E.G., Eijkel, J.C.T., Bergveld, P.: A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 68, 31–62 (1996)CrossRef
Metadaten
Titel
A novel model for graphene-based ion-sensitive field-effect transistor
verfasst von
Tarek El-Grour
Montasar Najari
Lassaad El-Mir
Publikationsdatum
08.09.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1068-6

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Electronics 1/2018 Zur Ausgabe

Neuer Inhalt