Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

25.02.2015 | Methodologies and Application | Ausgabe 5/2016

Soft Computing 5/2016

A novel multivariate fuzzy time series based forecasting algorithm incorporating the effect of clustering on prediction

Zeitschrift:
Soft Computing > Ausgabe 5/2016
Autor:
Arunava Roy
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Forecasting has often played predominant roles in daily life as necessary measures can be taken to bypass the undesired and detrimental future prompted by this fact, the issue of forecasting becomes one of the most important topics of research for the modern scientists and as a result several innovative forecasting techniques have been developed. Amongst various well-known forecasting techniques, fuzzy time series-based methods are successfully used, though they are suffering from some serious drawbacks, viz., fixed sized intervals, using some fixed membership values (0, 0.5, and 1) and moreover, the defuzzification process only deals with the factor that is to be predicted. Additionally, most of the existing and widely used fuzzy time series-based forecasting algorithms employ their own clustering techniques that may be data-dependent and in turn the predictive accuracy decrease. Prompted by the fact, the present author developed a novel multivariate fuzzy forecasting algorithm that is able to remove all the drawbacks as also can predict the future occurrences with better predictive accuracy. Moreover, the comparisons with the thirteen other existing frequently used forecasting algorithms (viz., conventional, fuzzy time series-based algorithms and ANN) were performed to demonstrate its better efficiency and predictive accuracy. Towards the end, the applicability and predictive accuracy of the developed algorithm has been demonstrated using three different data sets collected from three different domains, such as: oil agglomeration process (coal washing technique), frequently occurred web error prediction and the financial forecasting. The real dataset related to oil agglomeration was collected from CIMFER, Dhanbad, India, that regarding the frequently occurred web error codes of www.​ismdhanbad.​ac.​in, the official website of ISM Dhanbad, was collected from the Indian School of Mines (ISM) Dhanbad, India server and the finance data set was collected from the Ministry of Statistical and Program Implementation (Govt. of India).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2016

Soft Computing 5/2016 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise