Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.01.2020 | Methodologies and Application | Ausgabe 16/2020

Soft Computing 16/2020

A novel parallel image encryption algorithm based on hybrid chaotic maps with OpenCL implementation

Zeitschrift:
Soft Computing > Ausgabe 16/2020
Autoren:
Lin You, Ersong Yang, Guangyi Wang
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Since chaotic maps have the excellent properties of unpredictability, ergodicity and sensitivity to their parameters and initial values, they are quite suitable for generating chaotic sequences for securing communication systems and are also especially useful for securing images, and a lot of chaotic map-based image encryption algorithms have been proposed. But some existing image encryption algorithms were proved that their security, encryption efficiency or computational speeds are not quite satisfactory for practical applications. Some of them using only one type of chaotic system may suffer from low key space, and some others using two or more types of chaotic system may suffer from high computational overheads. In this paper, based on the classic 1D logistic map, a 2D one-coupling logistic dynamics system and OpenCL, a novel parallel image encryption algorithm HCMO is proposed. Our algorithm consists of a confusion phase and a diffusion phase using four sub-key matrices based on the hybrid logistic dynamics systems, the linear transformation and the enlarging operation. In the confusion phase, the image’s pixel positions are first scrambled by performing row-wise and column-wise permutation operations using two sub-key matrices; then, in its diffusion phase, both the bit XOR operation and the bit cyclic shifting are applied onto the scrambled intermediate image matrix using the other two sub-key matrices. In order to reduce the whole encrypting execution time, we speed up our HCMO on an OpenCL’s heterogeneous and parallel characteristics. Compared to the implementation of Vihari’s algorithm and some other chaotic map-based algorithms referred in this paper with the OpenCL-based implementation on the CPU and on the GPU, respectively, our algorithm’s simulation demonstrates remarkable improvement in the operational speedup, and the experimental result analyses have also shown that HCMO has a higher-level security than some other referred algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 16/2020

Soft Computing 16/2020 Zur Ausgabe

Premium Partner

    Bildnachweise