Skip to main content
Erschienen in: Journal of Computational Electronics 1/2016

21.09.2015

A novel process variation immune dopingless zero sub-threshold slope and zero impact ionization FET (DL-Z\(^{2}\)FET) based on transition metals

verfasst von: Sangeeta Singh, P. N. Kondekar

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transition metal (TM) electrodes based dopingless zero sub-threshold slope and zero impact ionization FET (DL-Z\(^{2}\)FET) is reported in this paper. The work-function engineering of TM electrodes is used for charge plasma based electrostatic pseudo doping. Work-function difference between TM electrodes and the undoped silicon film induces p\(^{+}\) and n\(^{+}\) regions in the film. TMs exhibit easy tunability of work-function and their CMOS fabrication compatibility pledges for their potential applications as these electrodes. A technology computer-aided design simulation study is performed to provide physical insight into its working mechanism and performance. It exhibits all the inherent characteristics of conventional Z\(^{2}\)FET, viz. zero slope switching, high \(I_{ON}/I_{OFF}\) ratio, lower operating voltages, immunity towards hot electron degradation and gate controlled hysteresis. The detrimental doping control issues, mobility degradation due to heavy doping and statistical random dopant fluctuations can no more obviate the device performance, it results in more process variations immune design. Hence it can be a potential fast switching transistor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: Impact Ionization MOS (I-MOS)— Part I: device and circuit simulations. IEEE Trans. Electron Dev. 52(1), 69–76 (2005)CrossRef Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: Impact Ionization MOS (I-MOS)— Part I: device and circuit simulations. IEEE Trans. Electron Dev. 52(1), 69–76 (2005)CrossRef
2.
Zurück zum Zitat Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)CrossRef
3.
Zurück zum Zitat Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27(4), 297–300 (2006)CrossRef Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27(4), 297–300 (2006)CrossRef
4.
Zurück zum Zitat Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRef Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRef
5.
Zurück zum Zitat Khatami, Y., Banerjee, K.: Steep subthreshold slope n-and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Dev. 56(11), 2752–2761 (2009)CrossRef Khatami, Y., Banerjee, K.: Steep subthreshold slope n-and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Dev. 56(11), 2752–2761 (2009)CrossRef
6.
Zurück zum Zitat Rooyackers, R., Vandooren, A., Verhulst, A.S., Walke, A.M., Simoen, E., Devriendt, K., Lo-Corotondo, S., Demand, M., Bryce, G., Loo, R., Hikavyy, A., Vandeweyer, T., Huyghebaert, C., Collaert, N., Thean, A.V.Y.: Ge-source vertical tunnel FETs using a novel replacement-source integration scheme. IEEE Trans. Electron Dev. 61(12), 4032–4039 (2014)CrossRef Rooyackers, R., Vandooren, A., Verhulst, A.S., Walke, A.M., Simoen, E., Devriendt, K., Lo-Corotondo, S., Demand, M., Bryce, G., Loo, R., Hikavyy, A., Vandeweyer, T., Huyghebaert, C., Collaert, N., Thean, A.V.Y.: Ge-source vertical tunnel FETs using a novel replacement-source integration scheme. IEEE Trans. Electron Dev. 61(12), 4032–4039 (2014)CrossRef
7.
Zurück zum Zitat Temple, V.A.K.: MOS-controlled thyristors—a new class of power devices. IEEE Trans. Electron Dev. 33(10), 1609–1618 (1986)CrossRef Temple, V.A.K.: MOS-controlled thyristors—a new class of power devices. IEEE Trans. Electron Dev. 33(10), 1609–1618 (1986)CrossRef
8.
Zurück zum Zitat Ronsisvalle, C., Enea, V., Abbate, C., Busatto, G., Sanseverino, A.: Perspective performances of MOS-Gated GTO in high-power applications. IEEE Trans. Electron Dev. 57(9), 2339–2343 (2010)CrossRef Ronsisvalle, C., Enea, V., Abbate, C., Busatto, G., Sanseverino, A.: Perspective performances of MOS-Gated GTO in high-power applications. IEEE Trans. Electron Dev. 57(9), 2339–2343 (2010)CrossRef
9.
Zurück zum Zitat Cho, H.J., Nemati, F., Roy, R., Gupta, R., Yang, K., Ershov, M.: A Novel Capacitorless DRAM Cell Using Thin Capacitively-coupled Thyristor (TCCT). IEDM Technical Digest, pp. 311–314. IEEE, New York (2005) Cho, H.J., Nemati, F., Roy, R., Gupta, R., Yang, K., Ershov, M.: A Novel Capacitorless DRAM Cell Using Thin Capacitively-coupled Thyristor (TCCT). IEDM Technical Digest, pp. 311–314. IEEE, New York (2005)
10.
Zurück zum Zitat Gupta, R., Nemati, F., Robins, S., Yang, K., Gopalakrishnan, V., Sundarraj, J.J.: 32 nm High-Density High-speed T-RAM Embedded Memory Technology. IEDM Technical Digest, pp. 12.1.1–12.1.4. IEEE, New York (2010) Gupta, R., Nemati, F., Robins, S., Yang, K., Gopalakrishnan, V., Sundarraj, J.J.: 32 nm High-Density High-speed T-RAM Embedded Memory Technology. IEDM Technical Digest, pp. 12.1.1–12.1.4. IEEE, New York (2010)
11.
Zurück zum Zitat Yang, K.J., Gupta, R.N., Banna, S., Nemati, F., Cho, H.J., Ershov, M.: Optimization of nanoscale thyristors on SOI for high-performance high-density memories. In: International SOI Conference, Niagara Falls, New York, pp. 113–114 (2006) Yang, K.J., Gupta, R.N., Banna, S., Nemati, F., Cho, H.J., Ershov, M.: Optimization of nanoscale thyristors on SOI for high-performance high-density memories. In: International SOI Conference, Niagara Falls, New York, pp. 113–114 (2006)
12.
Zurück zum Zitat Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: Z\(^{2}\)-FET used as 1-transistor high-speed DRAM. In: ESSDERC, pp. 197–200 (2012) Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: Z\(^{2}\)-FET used as 1-transistor high-speed DRAM. In: ESSDERC, pp. 197–200 (2012)
13.
Zurück zum Zitat Wan, J., Cristoloveanu, S., Royer, C.L., Zaslavsky, A.: A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection. Solid State Electron. 76, 109–111 (2012)CrossRef Wan, J., Cristoloveanu, S., Royer, C.L., Zaslavsky, A.: A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection. Solid State Electron. 76, 109–111 (2012)CrossRef
14.
Zurück zum Zitat Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: Z\(^{2}\)-FET: A zero-slope switching device with gate-controlled hysteresis. In: International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), pp. 1–4 (2012) Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: Z\(^{2}\)-FET: A zero-slope switching device with gate-controlled hysteresis. In: International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), pp. 1–4 (2012)
15.
Zurück zum Zitat Wan, J., Cristoloveanu, S., Royer, C.L., Zaslavsky, A.: A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection. Solid State Electron. 76, 109–111 (2012)CrossRef Wan, J., Cristoloveanu, S., Royer, C.L., Zaslavsky, A.: A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection. Solid State Electron. 76, 109–111 (2012)CrossRef
16.
Zurück zum Zitat Wan, J.: A systematic study of the sharp-switching Z\(^{2}\)-FET device: from mechanism to modeling and compact memory applications. Solid State Electron. 90, 2–11 (2013)CrossRef Wan, J.: A systematic study of the sharp-switching Z\(^{2}\)-FET device: from mechanism to modeling and compact memory applications. Solid State Electron. 90, 2–11 (2013)CrossRef
17.
Zurück zum Zitat Wan, J., et al.: Progress in Z\(^{2}\)-FET 1T-DRAM: retention time, writing modes, selective array operation, and dual bit storage. Solid State Electron. 84, 147–154 (2013)CrossRef Wan, J., et al.: Progress in Z\(^{2}\)-FET 1T-DRAM: retention time, writing modes, selective array operation, and dual bit storage. Solid State Electron. 84, 147–154 (2013)CrossRef
18.
Zurück zum Zitat Choi, W.Y., Choi, B.Y., Woo, D.S., Lee, J.D., Park, B.G.: A new fabrication method for self-aligned nanoscale I-MOS (impact-ionization MOS). In: IEEE DRC, pp. 211–212 (2004) Choi, W.Y., Choi, B.Y., Woo, D.S., Lee, J.D., Park, B.G.: A new fabrication method for self-aligned nanoscale I-MOS (impact-ionization MOS). In: IEEE DRC, pp. 211–212 (2004)
19.
Zurück zum Zitat Chiang, M.H., Lin, J.N., Kim, K., Chuang, C.T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Dev. 54(8), 2055–2060 (2007)CrossRef Chiang, M.H., Lin, J.N., Kim, K., Chuang, C.T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Dev. 54(8), 2055–2060 (2007)CrossRef
20.
Zurück zum Zitat Martinez, A., Barker, J.R., Svizhenko, A., Anantram, M.P., Asenov, A.: The impact of random dopant aggregation in source and drain on the performance of ballistic DG nano-MOSFETs: a NEGF study. IEEE Trans. Nanotechnol. 6(4), 438–445 (2007)CrossRef Martinez, A., Barker, J.R., Svizhenko, A., Anantram, M.P., Asenov, A.: The impact of random dopant aggregation in source and drain on the performance of ballistic DG nano-MOSFETs: a NEGF study. IEEE Trans. Nanotechnol. 6(4), 438–445 (2007)CrossRef
21.
Zurück zum Zitat Ho, J.C., Yerushalmi, R., Jacobson, Z.A., Fan, Z., Alley, R.L., Javey, A.: Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 7(1), 62–67 (2008)CrossRef Ho, J.C., Yerushalmi, R., Jacobson, Z.A., Fan, Z., Alley, R.L., Javey, A.: Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 7(1), 62–67 (2008)CrossRef
22.
Zurück zum Zitat Hueting, R.J., Rajasekharan, B., Salm, C., Schmitz, J.: The charge plasma pn diode. IEEE Electron Dev. Lett. 29(12), 1367–1369 (2008)CrossRef Hueting, R.J., Rajasekharan, B., Salm, C., Schmitz, J.: The charge plasma pn diode. IEEE Electron Dev. Lett. 29(12), 1367–1369 (2008)CrossRef
23.
Zurück zum Zitat Kumar, M.J., Janardhanan, S., et al.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Dev. 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S., et al.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Dev. 60(10), 3285–3290 (2013)CrossRef
24.
Zurück zum Zitat Ramaswamy, S., Jagadesh Kumar, M.: Junction-less impact ionization MOS (JIMOS): proposal and investigation. IEEE Trans. Electron Dev. 61(12), 4295–4298 (2014)CrossRef Ramaswamy, S., Jagadesh Kumar, M.: Junction-less impact ionization MOS (JIMOS): proposal and investigation. IEEE Trans. Electron Dev. 61(12), 4295–4298 (2014)CrossRef
25.
Zurück zum Zitat Singh, S., Kondekar, P.N.: Dopingless super-steep impact ionization MOS (dopingless-IMOS) based on work-function engineering. IET Electron. Lett. 50(12), 888–889 (2014)CrossRef Singh, S., Kondekar, P.N.: Dopingless super-steep impact ionization MOS (dopingless-IMOS) based on work-function engineering. IET Electron. Lett. 50(12), 888–889 (2014)CrossRef
26.
Zurück zum Zitat Singh, S., Pal, P., Kondekar, P.N.: Charge-plasma-based super-steep negative capacitance junctionless tunnel field effect transistor: design and performance. IET Electron. Lett. 50(25), 1963–1964 (2014)CrossRef Singh, S., Pal, P., Kondekar, P.N.: Charge-plasma-based super-steep negative capacitance junctionless tunnel field effect transistor: design and performance. IET Electron. Lett. 50(25), 1963–1964 (2014)CrossRef
27.
Zurück zum Zitat Nadda, K., Jagadesh Kumar, M.: Vertical bipolar charge plasma transistor with buried metal layer. Sci. Rep. Nat. 5, 7860 (2015)CrossRef Nadda, K., Jagadesh Kumar, M.: Vertical bipolar charge plasma transistor with buried metal layer. Sci. Rep. Nat. 5, 7860 (2015)CrossRef
28.
Zurück zum Zitat Rajasekharan, B., Hueting, R.J., Salm, C., Hemert, T.V., Wolters, R.A., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Dev. Lett. 31(6), 528–530 (2010)CrossRef Rajasekharan, B., Hueting, R.J., Salm, C., Hemert, T.V., Wolters, R.A., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Dev. Lett. 31(6), 528–530 (2010)CrossRef
29.
Zurück zum Zitat Teh, W.H., Trigg, A., Tung, C.H., Kumar, R., Balasubramanian, N., Kwong, D.L.: 200 mm wafer-scale epitaxial transfer of single crystal Si on glass by anodic bonding of silicon-on-insulator wafers. Appl. Phys. Lett. 87(7), 073107 (2005)CrossRef Teh, W.H., Trigg, A., Tung, C.H., Kumar, R., Balasubramanian, N., Kwong, D.L.: 200 mm wafer-scale epitaxial transfer of single crystal Si on glass by anodic bonding of silicon-on-insulator wafers. Appl. Phys. Lett. 87(7), 073107 (2005)CrossRef
30.
Zurück zum Zitat Nadda, K., Kumar, M.J.: Thin-film bipolar transistors on recrystallized polycrystalline silicon without impurity doped junctions: proposal and investigation. J. Display Technol. 10(7), 590–593 (2014)CrossRef Nadda, K., Kumar, M.J.: Thin-film bipolar transistors on recrystallized polycrystalline silicon without impurity doped junctions: proposal and investigation. J. Display Technol. 10(7), 590–593 (2014)CrossRef
31.
Zurück zum Zitat Kima, H.S., Blick, R.H., Kim, D.M., Eom, C.B., et al.: Bonding siliconon-insulator to glass wafers for integrated bio-electronic circuits. Appl. Phys. Lett. 85(12), 2370–2372 (2004)CrossRef Kima, H.S., Blick, R.H., Kim, D.M., Eom, C.B., et al.: Bonding siliconon-insulator to glass wafers for integrated bio-electronic circuits. Appl. Phys. Lett. 85(12), 2370–2372 (2004)CrossRef
32.
Zurück zum Zitat Silvaco Data Systems Inc.: Silvaco Manual. Silvaco Data Systems Inc., Santa Clara (2012) Silvaco Data Systems Inc.: Silvaco Manual. Silvaco Data Systems Inc., Santa Clara (2012)
33.
Zurück zum Zitat Bain, M., El Mubarek, H.A.W.: SiGe HBTs on bonded SOI incorporating buried silicide layers. IEEE Trans. Electron Dev. 52(3), 317–324 (2005)CrossRef Bain, M., El Mubarek, H.A.W.: SiGe HBTs on bonded SOI incorporating buried silicide layers. IEEE Trans. Electron Dev. 52(3), 317–324 (2005)CrossRef
34.
Zurück zum Zitat Arai, T., Tobita, H., Harada, Y., Suhara, M., Miyamoto, Y., Furuya, K.: Proposal of buried metal heterojunction bipolar transistor and fabrication of HBT with buried tungsten. In: International Conference on Indium Phosphide and Related Materials, IPRM, pp. 183–186 (1999) Arai, T., Tobita, H., Harada, Y., Suhara, M., Miyamoto, Y., Furuya, K.: Proposal of buried metal heterojunction bipolar transistor and fabrication of HBT with buried tungsten. In: International Conference on Indium Phosphide and Related Materials, IPRM, pp. 183–186 (1999)
35.
Zurück zum Zitat Nayar, V., Russell, J., Carline, R.T., Pidduck, A.J., Quinn, C., Nevin, A., Blackstone, S.: Optical properties of bonded silicon silicide on insulator (S2OI): a new substrate for electronic and optical devices. Thin Solid Films 313, 276–280 (1998)CrossRef Nayar, V., Russell, J., Carline, R.T., Pidduck, A.J., Quinn, C., Nevin, A., Blackstone, S.: Optical properties of bonded silicon silicide on insulator (S2OI): a new substrate for electronic and optical devices. Thin Solid Films 313, 276–280 (1998)CrossRef
36.
Zurück zum Zitat Zhu, S., Ru, G., Huang, Y.: Fabrication of silicon-silicide-on-insulator substrates using wafer bonding and layer-cutting techniques. Int. Conf. Solid State Integr. Circ. Technol. 1, 673–675 (2001) Zhu, S., Ru, G., Huang, Y.: Fabrication of silicon-silicide-on-insulator substrates using wafer bonding and layer-cutting techniques. Int. Conf. Solid State Integr. Circ. Technol. 1, 673–675 (2001)
37.
Zurück zum Zitat Morris, J.E., Iniewski, K.: Nanoelectronic Device Applications Handbook. CRC Press, Boca Raton (2013) Morris, J.E., Iniewski, K.: Nanoelectronic Device Applications Handbook. CRC Press, Boca Raton (2013)
38.
Zurück zum Zitat Drummond, T.J.: Work Functions of the Transition Metals and Metal Silicides, No. SAND99-0391J. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US) (1999) Drummond, T.J.: Work Functions of the Transition Metals and Metal Silicides, No. SAND99-0391J. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US) (1999)
39.
Zurück zum Zitat Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator. Semicond. Sci. Technol. 29(9), 095001 (2014)CrossRef Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator. Semicond. Sci. Technol. 29(9), 095001 (2014)CrossRef
40.
Zurück zum Zitat Vinet, M., Poiroux, T., Widiez, J., Lolivier, J., Previtali, B., Vizioz, C.: Bonded planar double-metal-gate NMOS transistors down to 10 nm. IEEE Electron Dev. Lett. 26(5), 317–319 (2005)CrossRef Vinet, M., Poiroux, T., Widiez, J., Lolivier, J., Previtali, B., Vizioz, C.: Bonded planar double-metal-gate NMOS transistors down to 10 nm. IEEE Electron Dev. Lett. 26(5), 317–319 (2005)CrossRef
Metadaten
Titel
A novel process variation immune dopingless zero sub-threshold slope and zero impact ionization FET (DL-ZFET) based on transition metals
verfasst von
Sangeeta Singh
P. N. Kondekar
Publikationsdatum
21.09.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0749-2

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Electronics 1/2016 Zur Ausgabe

Neuer Inhalt