Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2014 | Ausgabe 2/2014

The Journal of Supercomputing 2/2014

A novel real-time scheduling algorithm and performance analysis of a MapReduce-based cloud

Zeitschrift:
The Journal of Supercomputing > Ausgabe 2/2014
Autoren:
Fei Teng, Frédéric Magoulès, Lei Yu, Tianrui Li
Wichtige Hinweise
This work was partially supported by the National Natural Science Foundation of China (No. 61202043), the Fundamental Research Funds for the Central Universities (No. SWJTU12CX098), and the IRT SystemX (Pôle de Compétitivité Systematic).

Abstract

MapReduce, a popular programming model for processing data-intensive tasks, has achieved great success in a wide range of applications such as search indexing, social network mining, collaborative recommendation, and spam detection. However, the ability of MapReduce is limited in two respects by its default schedulers. First, it does not support concurrent services sharing a cloud datacenter and second, it fails to guarantee response time for deadline-constrained services. This paper proposes the Paused Rate Monotonic (PRM) algorithm for scheduling hard real-time tasks on a MapReduce-based cloud. The scheduling performance is analyzed theoretically. We prove a bound on cluster utilization, which can be used as a sufficient condition to test whether a given task set can be scheduled. Both the theoretical analysis and experimental evaluation show that the PRM algorithm outperforms traditional real-time ones by improving the probability that a real-time task set can be scheduled on a MapReduce-based cloud.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2014

The Journal of Supercomputing 2/2014Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise