Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.10.2019 | Engineering Applications of Neural Networks 2018

A novel recommendation method based on general matrix factorization and artificial neural networks

Zeitschrift:
Neural Computing and Applications
Autoren:
Stelios Kapetanakis, Nikolaos Polatidis, Gharbi Alshammari, Miltos Petridis
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Collaborative filtering is a successful approach in relevant item or service recommendation provision to users in rich, online domains. This approach has been widely applied in commercial environments with success, especially in online marketing, similar product suggestion and selection and tailor-made consumer suggestions. However, regardless of its market penetration, there are still considerable limitations in terms of accuracy in the proposed recommendations stemming from the high-frequency low-relevance user-item bias, data specificities and individual user patterns and needs that may be hidden in data. We propose a novel recommendation approach that improves accuracy and requires significantly less maintenance compared to traditional collaborative filtering. For the experimental evaluation, we use two real data sets and well-known metrics with the results validating our method. Our proposed method outperforms all the alternative recommendation methods for each of the two data sets and metrics and seems holistically effective against alternatives since it requires fewer settings to be considered without affecting the output.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise