Skip to main content
Erschienen in: Neural Processing Letters 2/2020

06.08.2020

A Novel Solution of Using Deep Learning for White Blood Cells Classification: Enhanced Loss Function with Regularization and Weighted Loss (ELFRWL)

verfasst von: Jaya Basnet, Abeer Alsadoon, P. W. C. Prasad, Sarmad Al Aloussi, Omar Hisham Alsadoon

Erschienen in: Neural Processing Letters | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep learning has been successfully applied in classification of white blood cells (WBCs), however, accuracy and processing time are found to be less than optimal hindering it from getting its full potential. This is due to imbalanced dataset, intra-class compactness, inter-class separability and overfitting problems. The main research idea is to enhance the classification and prediction accuracy of blood images while lowering processing time through the use of deep convolutional neural network (DCNN) architecture by using the modified loss function. The proposed system consists of a deep neural convolution network (DCNN) that will improve the classification accuracy by using modified loss function along with regularization. Firstly, images are pre-processed and fed through DCNN that contains different layers with different activation function for the feature extraction and classification. Along with modified loss function with regularization, weight function aids in the classification of WBCs by considering weights of samples belonging to each class for compensating the error arising due to imbalanced dataset. The processing time will be counted by each image to check the time enhancement. The classification accuracy and processing time are achieved using the dataset-master. Our proposed solution obtains better classification performance in the given dataset comparing with other previous methods. The proposed system enhanced the classification accuracy of 98.92% from 96.1% and a decrease in processing time from 0.354 to 0.216 s. Less time will be required by our proposed solution for achieving the model convergence with 9 epochs against the current convergence time of 13.5 epochs on average, epoch is the formation white blood cells (WBCs) and the development of granular cells. The proposed solution modified loss function to solve the adverse effect caused due to imbalance dataset by considering weight and use regularization technique for overfitting problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acharya V, Kumar P (2019) Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput 57:1783–1811CrossRef Acharya V, Kumar P (2019) Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput 57:1783–1811CrossRef
2.
Zurück zum Zitat Ahn D, Kim N, Moon S, Park T, Son S (2014) Optimization of a cell counting algorithm for mobile point-of-care testing platforms. Sensors 14(8):15244–15261CrossRef Ahn D, Kim N, Moon S, Park T, Son S (2014) Optimization of a cell counting algorithm for mobile point-of-care testing platforms. Sensors 14(8):15244–15261CrossRef
3.
Zurück zum Zitat Ahn D, Lee J, Moon S, Park T (2018) Human-level blood cell counting on lens-free shadow images exploiting deep neural networks. Analyst 143(22):5380–5387CrossRef Ahn D, Lee J, Moon S, Park T (2018) Human-level blood cell counting on lens-free shadow images exploiting deep neural networks. Analyst 143(22):5380–5387CrossRef
4.
Zurück zum Zitat Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852CrossRef Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852CrossRef
5.
Zurück zum Zitat Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M (2018) A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinf 19(1):365CrossRef Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M (2018) A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinf 19(1):365CrossRef
6.
Zurück zum Zitat Amin KM, Shahin A, Guo Y (2016) A novel breast tumour classification algorithm using neutrosophic score features. Measurement 81:210–220CrossRef Amin KM, Shahin A, Guo Y (2016) A novel breast tumour classification algorithm using neutrosophic score features. Measurement 81:210–220CrossRef
7.
Zurück zum Zitat Du X, Liu L, Wang X, Ni G, Zhang J, Liu J et al (2019) Automatic classification of cells in microscopic fecal images using convolutional neural networks. Biosci Rep 39(4):1–11CrossRef Du X, Liu L, Wang X, Ni G, Zhang J, Liu J et al (2019) Automatic classification of cells in microscopic fecal images using convolutional neural networks. Biosci Rep 39(4):1–11CrossRef
8.
Zurück zum Zitat Fan H, Zhang F, Xi L, Li Z, Liu G, Xu Y (2019) LeukocyteMask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. J Biophoton 12:1–17CrossRef Fan H, Zhang F, Xi L, Li Z, Liu G, Xu Y (2019) LeukocyteMask: an automated localization and segmentation method for leukocyte in blood smear images using deep neural networks. J Biophoton 12:1–17CrossRef
9.
Zurück zum Zitat Gopakumar GP, Swetha M, Sai SG, Subrahmanyam S (2018) Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophoton 11:e201700003CrossRef Gopakumar GP, Swetha M, Sai SG, Subrahmanyam S (2018) Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophoton 11:e201700003CrossRef
10.
Zurück zum Zitat Gupta D, Arora J, Agrawal U, Khanna A, de Albuquerque VH (2019) Optimized binary Bat algorithm for classification of white blood cells. Measurement 143:180–190CrossRef Gupta D, Arora J, Agrawal U, Khanna A, de Albuquerque VH (2019) Optimized binary Bat algorithm for classification of white blood cells. Measurement 143:180–190CrossRef
11.
Zurück zum Zitat Habibzadeh M, Krzyizak A, Fevens T (2013) White blood cell differential counts using convolutional neural networks for low resolution images. Artifi Intell Soft Comput 50:263–274CrossRef Habibzadeh M, Krzyizak A, Fevens T (2013) White blood cell differential counts using convolutional neural networks for low resolution images. Artifi Intell Soft Comput 50:263–274CrossRef
12.
Zurück zum Zitat Hegde RB, Prasad K, Hebbar H, Singh BM (2019) Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Australas Phys Eng Sci Med 42(2):627–638CrossRef Hegde RB, Prasad K, Hebbar H, Singh BM (2019) Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Australas Phys Eng Sci Med 42(2):627–638CrossRef
13.
Zurück zum Zitat Hiremath PS, Bannigidad P, Geeta S (2010) Automated identification and classification of white blood cells (leukocytes) in digital microscopic images. In: IJCA special issue on “recent trends in image processing and pattern recognition” RTIPPR, pp 59–63 Hiremath PS, Bannigidad P, Geeta S (2010) Automated identification and classification of white blood cells (leukocytes) in digital microscopic images. In: IJCA special issue on “recent trends in image processing and pattern recognition” RTIPPR, pp 59–63
14.
Zurück zum Zitat Jha KK, Dutta H (2019) Mutual Information based hybrid model and Deep learning for Acute Lymphocytic Leukaemia detection in single cell Blood Smear Images. Comput Methods Programs Biomed 18:3–43 Jha KK, Dutta H (2019) Mutual Information based hybrid model and Deep learning for Acute Lymphocytic Leukaemia detection in single cell Blood Smear Images. Comput Methods Programs Biomed 18:3–43
15.
Zurück zum Zitat Khobragade S, Mor DD, Patil CY (2015) Detection of leukemia in microscopic white blood cell images. In: International conference on information processing (ICIP), pp 435–440 Khobragade S, Mor DD, Patil CY (2015) Detection of leukemia in microscopic white blood cell images. In: International conference on information processing (ICIP), pp 435–440
16.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2(8):1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2(8):1097–1105
17.
Zurück zum Zitat Kulkarni KP, Arora RS, Marwaha RK (2011) Survival outcome of childhood acute lymphoblastic leukemia in India: a resource-limited perspective of more than 40 years. J Pediatr Hematol Oncol 33(6):475–479CrossRef Kulkarni KP, Arora RS, Marwaha RK (2011) Survival outcome of childhood acute lymphoblastic leukemia in India: a resource-limited perspective of more than 40 years. J Pediatr Hematol Oncol 33(6):475–479CrossRef
19.
Zurück zum Zitat Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017). Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125 Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017). Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125
20.
Zurück zum Zitat May Z, Aziz SS (2013) Automated quantification and classification of malaria parasites in thin blood smears. IEEE international conference on signal and image processing applications, pp 369–373 May Z, Aziz SS (2013) Automated quantification and classification of malaria parasites in thin blood smears. IEEE international conference on signal and image processing applications, pp 369–373
21.
Zurück zum Zitat Mirjalili S (2016) A sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef Mirjalili S (2016) A sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef
22.
Zurück zum Zitat Mishra S, Sa P (2016) A survey on automated diagnosis on the detection of Leukemia: a hematological disorder. In: 2016 3rd international conference on recent advances in information technology Mishra S, Sa P (2016) A survey on automated diagnosis on the detection of Leukemia: a hematological disorder. In: 2016 3rd international conference on recent advances in information technology
23.
Zurück zum Zitat Mishra S, Majhi B, Sa PK (2019) Texture feature-based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control 47:303–311CrossRef Mishra S, Majhi B, Sa PK (2019) Texture feature-based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control 47:303–311CrossRef
24.
Zurück zum Zitat Pan X, Yang D, Li L, Liu Z, Yang H, Cao Z et al (2018) Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks. World Wide Web 21(6):1721–1743CrossRef Pan X, Yang D, Li L, Liu Z, Yang H, Cao Z et al (2018) Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks. World Wide Web 21(6):1721–1743CrossRef
25.
Zurück zum Zitat Qin F, Gao N, Peng Y, Wu Z, Shen S, Grudtsin A (2018) Fine-grained leukocyte classification with deep residual learning for microscopic images. Comput Methods Programs Biomed 162:243–252CrossRef Qin F, Gao N, Peng Y, Wu Z, Shen S, Grudtsin A (2018) Fine-grained leukocyte classification with deep residual learning for microscopic images. Comput Methods Programs Biomed 162:243–252CrossRef
26.
Zurück zum Zitat Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J et al (2018) A novel stacked generalization of models for improved TB detection in chest radiographs. IEEE Eng Med Biol Soc 50:89 Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J et al (2018) A novel stacked generalization of models for improved TB detection in chest radiographs. IEEE Eng Med Biol Soc 50:89
27.
Zurück zum Zitat Rajaraman S, Jaeger S, Antani SK (2019) Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7:1–16CrossRef Rajaraman S, Jaeger S, Antani SK (2019) Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7:1–16CrossRef
28.
Zurück zum Zitat Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2017) Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimedia Tools Appl 76(18):19057–19085CrossRef Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS (2017) Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimedia Tools Appl 76(18):19057–19085CrossRef
29.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241
30.
Zurück zum Zitat Shahin AI, Guo Y, Amin KM, Sharawi AA (2019) White blood cells identification system based on convolutional deep neural learning networks. Comput Methods Programs Biomed 168:69–80CrossRef Shahin AI, Guo Y, Amin KM, Sharawi AA (2019) White blood cells identification system based on convolutional deep neural learning networks. Comput Methods Programs Biomed 168:69–80CrossRef
31.
Zurück zum Zitat Smits S, Leyte A (2014) Clinical performance evaluation of the cellavision image capture system in the white blood cell differential on peripheral blood smears. J Clin Pathol 67(2):168–172CrossRef Smits S, Leyte A (2014) Clinical performance evaluation of the cellavision image capture system in the white blood cell differential on peripheral blood smears. J Clin Pathol 67(2):168–172CrossRef
32.
Zurück zum Zitat Su MC, Cheng CY, Wang PC (2014) A neural-network-based approach to white blood cell classification. Sci World J 10:69 Su MC, Cheng CY, Wang PC (2014) A neural-network-based approach to white blood cell classification. Sci World J 10:69
33.
Zurück zum Zitat Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans Med Imaging 35(5):1299–1312CrossRef Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning. IEEE Trans Med Imaging 35(5):1299–1312CrossRef
34.
Zurück zum Zitat Tareef A, Song Y, Cai W, Wang Y, Feng DD, Chen M (2016) Automatic nuclei and cytoplasm segmentation of leukocytes with color and texture-based image enhancement. In: IEEE 13th International symposium on Biomedical imaging, pp 935–938 Tareef A, Song Y, Cai W, Wang Y, Feng DD, Chen M (2016) Automatic nuclei and cytoplasm segmentation of leukocytes with color and texture-based image enhancement. In: IEEE 13th International symposium on Biomedical imaging, pp 935–938
35.
Zurück zum Zitat Vijayalakshmi A (2019) Deep learning approach to detect malaria from microscopic images. Multimedia Tools Appl 8(1):1–21MathSciNet Vijayalakshmi A (2019) Deep learning approach to detect malaria from microscopic images. Multimedia Tools Appl 8(1):1–21MathSciNet
36.
Zurück zum Zitat Wang Q, Wang J, Zhou M, Li Q, Wang Y (2017) Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology. Biomed Opt Express 8(6):3017–3028CrossRef Wang Q, Wang J, Zhou M, Li Q, Wang Y (2017) Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology. Biomed Opt Express 8(6):3017–3028CrossRef
37.
Zurück zum Zitat Xie W, Noble JA, Zisserman A (2018) Microscopy cell counting and detection with fully convolutional regression networks. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):283–292CrossRef Xie W, Noble JA, Zisserman A (2018) Microscopy cell counting and detection with fully convolutional regression networks. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):283–292CrossRef
Metadaten
Titel
A Novel Solution of Using Deep Learning for White Blood Cells Classification: Enhanced Loss Function with Regularization and Weighted Loss (ELFRWL)
verfasst von
Jaya Basnet
Abeer Alsadoon
P. W. C. Prasad
Sarmad Al Aloussi
Omar Hisham Alsadoon
Publikationsdatum
06.08.2020
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2020
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10321-9

Weitere Artikel der Ausgabe 2/2020

Neural Processing Letters 2/2020 Zur Ausgabe

Neuer Inhalt