Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.04.2017 | Ausgabe 11/2017

Water Resources Management 11/2017

A Novel Spatiotemporal Statistical Downscaling Method for Hourly Rainfall

Zeitschrift:
Water Resources Management > Ausgabe 11/2017
Autoren:
Gwo-Fong Lin, Ming-Jui Chang, Chian-Fu Wang

Abstract

Finer spatiotemporal resolution rainfall data is essential for assessing hydrological impacts of climate change on medium and small basins. However, existing methods pay less attention to the inter-day correlation and diurnal cycle, which can strongly influence the hydrological cycle. To address this problem, we present a spatiotemporal downscaling method that is capable of reproducing the inter-day correlation, the diurnal cycle, and rainfall statistics on daily and hourly scales. The large-scale datasets, which we obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset (NNR) and general circulation model (GCM) outputs, and local rainfall data are analyzed to assess the impacts of climate change on rainfall. Our proposed method consists of two steps: spatial downscaling and temporal downscaling. We apply spatial downscaling first to obtain the relationship between large-scale datasets and daily rainfall at a site scale using a k-nearest neighbor method (KNN). Then, we conduct an hourly downscaling of daily rainfall in the second step using a genetic algorithm-based KNN (GAKNN) with the inter-day correlation and the diurnal cycle. Furthermore, we analyzed changes in rainfall statistics for the periods 2046–2065 and 2081–2100 under the A2, A1B, and B1 scenarios of the third generation Coupled Global Climate Model (CGCM3.1) and Bergen Climate Model version 2 (BCM2.0). An application of our proposed method to the Shihmen Reservoir basin (Taiwan) has shown that it could accurately reproduce local rainfall and its statistics on daily and hourly scales. Overall, the results demonstrated that the proposed spatiotemporal method is a powerful tool for downscaling hourly rainfall data from a large-scale dataset. The understanding of future changes of rainfall characteristics through our proposed method is also expected to assist the planning and management of water resources systems.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2017

Water Resources Management 11/2017Zur Ausgabe

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Unsicherheitsabschätzung für die Berechnung von dynamischen Überschwemmungskarten – Fallstudie Kulmbach

Das vom BMBF geförderte Projekt FloodEvac hat zum Ziel, im Hochwasserfall räumliche und zeitliche Informationen der Hochwassergefährdung bereitzustellen. Im hier vorgestellten Teilprojekt werden Überschwemmungskarten zu Wassertiefen und Fließgeschwindigkeiten unter Angabe der Modellunsicherheiten berechnet.
Jetzt gratis downloaden!

Bildnachweise