Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.12.2019 | Methodologies and Application | Ausgabe 15/2020

Soft Computing 15/2020

A novel systematic approach to diagnose brain tumor using integrated type-II fuzzy logic and ANFIS (adaptive neuro-fuzzy inference system) model

Zeitschrift:
Soft Computing > Ausgabe 15/2020
Autoren:
Subhashis Chatterjee, Ananya Das
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Brain tumor is an alarming threat among children and adults worldwide. Early detection and proper diagnosis of the tumor can enhance the chance of accurate survival among the individuals. Segmentation and classification of the detected tumor are based on its grade, i.e., criticality intensifies the survival rate and accurate treatment planning. However, manual segmentation of gliomas is time-consuming and results in an inaccurate diagnosis. Prompted by these facts, a multi-module automated framework has been developed to segment the brain multi-resonance images and classify it into two major classes, namely benign (low-grade) and malignant (high-grade). The present work is divided into four distinct modules: pre-processing, segmentation (clustering), feature extraction and classification. An efficient segmentation technique of the glioma images is proposed, which thereby provides a novel approach for the detection algorithm. Subsequently, prominent features characterizing mass effect, contrast, midline shift and irregularity of the edges of the tumor that are necessary for the physicians to detect tumor, are extracted. Using an ensemble of type-II fuzzy inference system and adaptive neuro-fuzzy inference system, a novel classifying technique has been developed to classify the detected tumor incorporating the extracted features. Finally, the research is tested and validated to show its consistency and accuracy using the images of patients of the BRATS dataset where the ground truth is made available. The detailed implementation of the proposed hybrid model is accomplished to establish its superiority in recognizing the grade of the tumor over other models mentioned in the literature survey.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 15/2020

Soft Computing 15/2020 Zur Ausgabe

Premium Partner

    Bildnachweise