Skip to main content
Erschienen in:

16.12.2022

A Novel Unsupervised Spatial–Temporal Learning Mechanism in a Bio-inspired Spiking Neural Network

verfasst von: Masoud Amiri, Amir Homayoun Jafari‬, Bahador Makkiabadi, Soheila Nazari

Erschienen in: Cognitive Computation | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bio-inspired computing is a powerful platform that develops intelligent machines based on principles of the behavioral and functional mechanisms of the human nervous system. Such machines can be critical tools in expert systems, speech recognition, pattern recognition, and machine vision. In this study, a retinal model is used as input layer of spiking network to convert image pixels to spike trains. The produced spikes are injected into a spiking neural network (SNN) as a second layer, which structure and functioning is inspired by real neuronal networks (i.e. excitatory and inhibitory neurotransmitters as AMPA and GABA currents and spiking neurons). Similarly, an unsupervised, spatial–temporal, and sparse spike-based learning mechanism based on learning processes in the brain was developed to train the spiking neurons in the output layer for recognizing patterns of MNIST and EMNIST datasets with very high accuracy (above 97%) and CIFAR10 with accuracy 92.9%. The proposed spiking pattern recognition network has higher classification accuracy than previous deep spiking networks and has advantages such as higher convergence speed, unsupervised learning, fewer numbers of hyper-parameters and network layers, and ability to learn with the limited number of training data. Finally, by changing the size and stride of the averaging windows in the visual pathway, we can train the network with only 10% of the training datasets, achieving accuracy similar or higher than state-of-the-art deep learning approaches. The ability to achieve high-performance accuracy in pattern recognition networks despite the limited number of training data is one of the most important challenges of neural networks in artificial intelligence. In summary, the novel bio-inspired neuronal network utilizes spiking trains and learns unsupervised and is capable of recognizing complex patterns, similar in performance to advanced neuronal networks using deep learning, and potentially can be implemented in neuromorphic hardware.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sengupta B, Stemmler MB, Friston KJ. Information and efficiency in the nervous system—a synthesis. PLoS Comput Biol. 2013;9(7): e1003157.CrossRef Sengupta B, Stemmler MB, Friston KJ. Information and efficiency in the nervous system—a synthesis. PLoS Comput Biol. 2013;9(7): e1003157.CrossRef
2.
Zurück zum Zitat Amiri M, Nazari S, Faez K. Digital realization of the proposed linear model of the H odgkin-H uxley neuron. Int J Circuit Theory Appl. 2019;47(3):483–97.CrossRef Amiri M, Nazari S, Faez K. Digital realization of the proposed linear model of the H odgkin-H uxley neuron. Int J Circuit Theory Appl. 2019;47(3):483–97.CrossRef
3.
Zurück zum Zitat Diaz C, Sanchez G, Duchen G, Nakano M, Perez H. An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing. 2016;189:130–4.CrossRef Diaz C, Sanchez G, Duchen G, Nakano M, Perez H. An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing. 2016;189:130–4.CrossRef
4.
Zurück zum Zitat Wang Q, Li Y, Shao B, Dey S, Li P. Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA. Neurocomputing. 2017;221:146–58.CrossRef Wang Q, Li Y, Shao B, Dey S, Li P. Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA. Neurocomputing. 2017;221:146–58.CrossRef
5.
Zurück zum Zitat Haghiri S, Ahmadi A, Saif M. VLSI implementable neuron-astrocyte control mechanism. Neurocomputing. 2016;214:280–96.CrossRef Haghiri S, Ahmadi A, Saif M. VLSI implementable neuron-astrocyte control mechanism. Neurocomputing. 2016;214:280–96.CrossRef
6.
Zurück zum Zitat Maguire LP, McGinnity TM, Glackin B, Ghani A, Belatreche A, Harkin J. Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing. 2007;71(1):13–29.CrossRef Maguire LP, McGinnity TM, Glackin B, Ghani A, Belatreche A, Harkin J. Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing. 2007;71(1):13–29.CrossRef
7.
Zurück zum Zitat Indiveri G, Liu SC. Memory and information processing in neuromorphic systems. Proc IEEE. 2015;103(8):1379–97.CrossRef Indiveri G, Liu SC. Memory and information processing in neuromorphic systems. Proc IEEE. 2015;103(8):1379–97.CrossRef
8.
Zurück zum Zitat Merolla P, Arthur J, Akopyan F, Imam N, Manohar R, Modha DS. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In Custom Integrated Circuits Conference (CICC) IEEE 2011. p. 1–4. Merolla P, Arthur J, Akopyan F, Imam N, Manohar R, Modha DS. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In Custom Integrated Circuits Conference (CICC) IEEE 2011. p. 1–4.
9.
Zurück zum Zitat Furber S. Large-scale neuromorphic computing systems. J Neural Eng. 2016;13(5): 051001.CrossRef Furber S. Large-scale neuromorphic computing systems. J Neural Eng. 2016;13(5): 051001.CrossRef
10.
Zurück zum Zitat Azghadi MR, Iannella N, Al-Sarawi S, Abbott D. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity. PLoS ONE. 2014;9(2): e88326.CrossRef Azghadi MR, Iannella N, Al-Sarawi S, Abbott D. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity. PLoS ONE. 2014;9(2): e88326.CrossRef
11.
Zurück zum Zitat Azghadi MR, Iannella N, Al-Sarawi SF, Indiveri G, Abbott D. Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges. Proc IEEE. 2014;102(5):717–37.CrossRef Azghadi MR, Iannella N, Al-Sarawi SF, Indiveri G, Abbott D. Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges. Proc IEEE. 2014;102(5):717–37.CrossRef
12.
Zurück zum Zitat Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front Neurosci. 2015;9:141.CrossRef Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front Neurosci. 2015;9:141.CrossRef
13.
Zurück zum Zitat McCormick DA, Connors BW, Lighthall JW, Prince DA. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol. 1985;54(4):782–806.CrossRef McCormick DA, Connors BW, Lighthall JW, Prince DA. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol. 1985;54(4):782–806.CrossRef
14.
Zurück zum Zitat Yamazaki K, Vo-Ho VK, Bulsara D, Le N. Spiking neural networks and their applications: a Review. Brain Sci. 2022;12(7):863.CrossRef Yamazaki K, Vo-Ho VK, Bulsara D, Le N. Spiking neural networks and their applications: a Review. Brain Sci. 2022;12(7):863.CrossRef
15.
Zurück zum Zitat Kattenborn T, Leitloff J, Schiefer F, Hinz S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 2021;173:24–49.CrossRef Kattenborn T, Leitloff J, Schiefer F, Hinz S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 2021;173:24–49.CrossRef
16.
Zurück zum Zitat Blouw P, Eliasmith C. Event-driven signal processing with neuromorphic computing systems. In ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020. p. 8534–8538. IEEE. Blouw P, Eliasmith C. Event-driven signal processing with neuromorphic computing systems. In ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020. p. 8534–8538. IEEE.
17.
Zurück zum Zitat Nazari S, Amiri M, Faez K, Van Hulle MM. Information transmitted from bioinspired Neuron-Astrocyte network improves cortical spiking Network’s pattern recognition performance. IEEE transactions on neural networks and learning systems. 2019;31(2):464–74.MathSciNetCrossRef Nazari S, Amiri M, Faez K, Van Hulle MM. Information transmitted from bioinspired Neuron-Astrocyte network improves cortical spiking Network’s pattern recognition performance. IEEE transactions on neural networks and learning systems. 2019;31(2):464–74.MathSciNetCrossRef
18.
Zurück zum Zitat Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K. Enabling spike-based backpropagation for training deep neural network architectures. Front Neurosci. 2020;14:119.CrossRef Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K. Enabling spike-based backpropagation for training deep neural network architectures. Front Neurosci. 2020;14:119.CrossRef
19.
Zurück zum Zitat Chankyu Lee, Syed Shakib Sarwar, and Kaushik Roy. Enabling spike-based backpropagation in state-of-the-art deep neural network architectures. 2019. arXiv preprint arXiv:1903.06379. Chankyu Lee, Syed Shakib Sarwar, and Kaushik Roy. Enabling spike-based backpropagation in state-of-the-art deep neural network architectures. 2019. arXiv preprint arXiv:​1903.​06379.
20.
Zurück zum Zitat Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning rule for efficient and rapid inference on deep spiking neural networks. arXiv 2019. p. arXiv–1907. Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning rule for efficient and rapid inference on deep spiking neural networks. arXiv 2019. p. arXiv–1907.
21.
Zurück zum Zitat Wu Y, Deng L, Li G, Zhu J, Xie Y, Shi L. Direct training for spiking neural networks: faster, larger, better. Proc AAAI Conf Artif Intell. 2019;33(01):1311–1318. Wu Y, Deng L, Li G, Zhu J, Xie Y, Shi L. Direct training for spiking neural networks: faster, larger, better. Proc AAAI Conf Artif Intell. 2019;33(01):1311–1318.
22.
Zurück zum Zitat Zhang W, Li P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. 2020. arXiv preprint arXiv:2002.10085. Zhang W, Li P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. 2020. arXiv preprint arXiv:​2002.​10085.
23.
Zurück zum Zitat Rathi N, Roy K. Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Transact Neural Netw Learn Syst. 2021. Rathi N, Roy K. Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Transact Neural Netw Learn Syst. 2021.
24.
Zurück zum Zitat Chen X, Wang W, Bender C, Ding Y, Jia R, Li B, Song D. Refit: a unified watermark removal framework for deep learning systems with limited data. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security 2021. p. 321-335. Chen X, Wang W, Bender C, Ding Y, Jia R, Li B, Song D. Refit: a unified watermark removal framework for deep learning systems with limited data. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security 2021. p. 321-335.
25.
Zurück zum Zitat Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol. 2008;4(12): e1000239.MathSciNetCrossRef Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol. 2008;4(12): e1000239.MathSciNetCrossRef
26.
Zurück zum Zitat Neil D, Liu SC. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2014;22(12):2621–2628. Neil D, Liu SC. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2014;22(12):2621–2628.
27.
Zurück zum Zitat Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci. 2015;9. Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci. 2015;9.
28.
Zurück zum Zitat Tissera MD, McDonnell MD. Deep extreme learning machines: supervised autoencoding architecture for classification. Neurocomputing. 2016;174:42–9.CrossRef Tissera MD, McDonnell MD. Deep extreme learning machines: supervised autoencoding architecture for classification. Neurocomputing. 2016;174:42–9.CrossRef
29.
Zurück zum Zitat Zhang M, Qu H, Xie X, Kurths J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing. 2017;219:333–49.CrossRef Zhang M, Qu H, Xie X, Kurths J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing. 2017;219:333–49.CrossRef
30.
Zurück zum Zitat Eshraghian JK, Cho K, Zheng C, Nam M, Iu HH, Lei W, Eshraghian K. Neuromorphic vision hybrid rram-cmos architecture. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2018;26(12):2816–2829. Eshraghian JK, Cho K, Zheng C, Nam M, Iu HH, Lei W, Eshraghian K. Neuromorphic vision hybrid rram-cmos architecture. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2018;26(12):2816–2829.
31.
Zurück zum Zitat Werginz P, Benav H, Zrenner E, Rattay F. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res. 2015;111:170–81.CrossRef Werginz P, Benav H, Zrenner E, Rattay F. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res. 2015;111:170–81.CrossRef
32.
Zurück zum Zitat Fohlmeister JF, Coleman PA, Miller RF. Modeling the repetitive firing of retinal ganglion cells. Brain Res. 1990;510(2):343–5.CrossRef Fohlmeister JF, Coleman PA, Miller RF. Modeling the repetitive firing of retinal ganglion cells. Brain Res. 1990;510(2):343–5.CrossRef
33.
Zurück zum Zitat Braitenberg V, Schüz A. Anatomy of the cortex: statistics and geometry. 2013;18. Springer Science & Business Media. Braitenberg V, Schüz A. Anatomy of the cortex: statistics and geometry. 2013;18. Springer Science & Business Media.
34.
Zurück zum Zitat Tuckwell HC. Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories. 2005;8. Cambridge University Press. Tuckwell HC. Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories. 2005;8. Cambridge University Press.
35.
Zurück zum Zitat Nazari S, Faez K. Establishing the flow of information between two bio-inspired spiking neural networks. Inf Sci. 2019;477:80–99.CrossRef Nazari S, Faez K. Establishing the flow of information between two bio-inspired spiking neural networks. Inf Sci. 2019;477:80–99.CrossRef
36.
Zurück zum Zitat Ardakani A, Condo C, Gross WJ. Sparsely-connected neural networks: towards efficient VLSI implementation of deep neural networks. 2016. arXiv preprint arXiv:1611.01427. Ardakani A, Condo C, Gross WJ. Sparsely-connected neural networks: towards efficient VLSI implementation of deep neural networks. 2016. arXiv preprint arXiv:​1611.​01427.
37.
Zurück zum Zitat Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32(6):1149–64.CrossRef Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32(6):1149–64.CrossRef
38.
Zurück zum Zitat Holmgren C, Harkany T, Svennenfors B, Zilberter Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol. 2003;551(1):139–53.CrossRef Holmgren C, Harkany T, Svennenfors B, Zilberter Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol. 2003;551(1):139–53.CrossRef
39.
Zurück zum Zitat Diaz C, Frias T, Sanchez G, Perez H, Toscano K, Duchen G. A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing. 2017;239:113–21.CrossRef Diaz C, Frias T, Sanchez G, Perez H, Toscano K, Duchen G. A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing. 2017;239:113–21.CrossRef
40.
Zurück zum Zitat Chen Q, Wang J, Yang S, Qin Y, Deng B, Wei X. A real-time FPGA implementation of a biologically inspired central pattern generator network. Neurocomputing. 2017;244:63–80.CrossRef Chen Q, Wang J, Yang S, Qin Y, Deng B, Wei X. A real-time FPGA implementation of a biologically inspired central pattern generator network. Neurocomputing. 2017;244:63–80.CrossRef
41.
Zurück zum Zitat Sidaty N, Larabi MC, Saadane A. Toward an audiovisual attention model for multimodal video content. Neurocomputing. 2017. Sidaty N, Larabi MC, Saadane A. Toward an audiovisual attention model for multimodal video content. Neurocomputing. 2017.
42.
Zurück zum Zitat Eskandari E, Ahmadi A, Gomar S. Effect of spike-timing-dependent plasticity on neural assembly computing. Neurocomputing. 2016;191:107–16.CrossRef Eskandari E, Ahmadi A, Gomar S. Effect of spike-timing-dependent plasticity on neural assembly computing. Neurocomputing. 2016;191:107–16.CrossRef
43.
Zurück zum Zitat Ferrández JM, Lorente V, de la Paz F, Fernández E. Training biological neural cultures: Towards Hebbian learning. Neurocomputing. 2013;114:3–8.CrossRef Ferrández JM, Lorente V, de la Paz F, Fernández E. Training biological neural cultures: Towards Hebbian learning. Neurocomputing. 2013;114:3–8.CrossRef
44.
Zurück zum Zitat Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18(24):10464–72.CrossRef Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18(24):10464–72.CrossRef
45.
Zurück zum Zitat Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–43.CrossRef Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–43.CrossRef
46.
Zurück zum Zitat Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 1994;368(6473):737–40.CrossRef Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 1994;368(6473):737–40.CrossRef
47.
Zurück zum Zitat Skangiel-Kramska J, Głażewski S, Jabłońska B, Siucińska E, Kossut M. Reduction of GABA A receptor binding of [3 H] muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Exp Brain Res. 1994;100(1):39–46.CrossRef Skangiel-Kramska J, Głażewski S, Jabłońska B, Siucińska E, Kossut M. Reduction of GABA A receptor binding of [3 H] muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Exp Brain Res. 1994;100(1):39–46.CrossRef
48.
Zurück zum Zitat Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Höffken O. Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—a pilot study. Front Behavior Neurosci. 2016;10. Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Höffken O. Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—a pilot study. Front Behavior Neurosci. 2016;10.
49.
Zurück zum Zitat Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS ONE. 2012;7(4): e34993.CrossRef Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS ONE. 2012;7(4): e34993.CrossRef
50.
Zurück zum Zitat Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.CrossRef Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.CrossRef
51.
Zurück zum Zitat O'Connor P, Neil D, Liu SC, Delbruck T, Pfeiffer M. Real-time classification and sensor fusion with a spiking deep belief network. Front Neurosci. 2013;7 O'Connor P, Neil D, Liu SC, Delbruck T, Pfeiffer M. Real-time classification and sensor fusion with a spiking deep belief network. Front Neurosci. 2013;7
52.
Zurück zum Zitat Lin Z, Ma D, Meng J, Chen L. Relative ordering learning in spiking neural network for pattern recognition. Neurocomputing. 2017. Lin Z, Ma D, Meng J, Chen L. Relative ordering learning in spiking neural network for pattern recognition. Neurocomputing. 2017.
53.
Zurück zum Zitat Brader JM, Senn W, Fusi S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 2007;19(11):2881–912.MathSciNetMATHCrossRef Brader JM, Senn W, Fusi S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 2007;19(11):2881–912.MathSciNetMATHCrossRef
54.
Zurück zum Zitat Beyeler M, Dutt ND, Krichmar JL. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 2013;48:109–24.CrossRef Beyeler M, Dutt ND, Krichmar JL. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 2013;48:109–24.CrossRef
55.
Zurück zum Zitat Querlioz D, Bichler O, Dollfus P, Gamrat C. Immunity to device variations in a spiking neural network with memristive nanodevices. IEEE Trans Nanotechnol. 2013;12(3):288–95.CrossRef Querlioz D, Bichler O, Dollfus P, Gamrat C. Immunity to device variations in a spiking neural network with memristive nanodevices. IEEE Trans Nanotechnol. 2013;12(3):288–95.CrossRef
56.
Zurück zum Zitat Nazari S. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neurocomputing. 2019;330:196–211.CrossRef Nazari S. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neurocomputing. 2019;330:196–211.CrossRef
57.
Zurück zum Zitat Jin Y, Zhang W, Li P. Hybrid macro/micro level backpropagation for training deep spiking neural networks. Adv Neural Inform Process Syst. 2018;31. Jin Y, Zhang W, Li P. Hybrid macro/micro level backpropagation for training deep spiking neural networks. Adv Neural Inform Process Syst. 2018;31.
58.
Zurück zum Zitat Ngu HCV, Lee KM. Effective conversion of a convolutional neural network into a spiking neural network for image recognition tasks. Appl Sci. 2022;12(11):5749.CrossRef Ngu HCV, Lee KM. Effective conversion of a convolutional neural network into a spiking neural network for image recognition tasks. Appl Sci. 2022;12(11):5749.CrossRef
59.
Zurück zum Zitat Lee C, Panda P, Srinivasan G, Roy K. Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Front Neurosci. 2018;12:435.CrossRef Lee C, Panda P, Srinivasan G, Roy K. Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Front Neurosci. 2018;12:435.CrossRef
60.
Zurück zum Zitat Diehl PU, Neil D, Binas J, Cook M, Liu SC, Pfeiffer M. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 International Joint Conference on Neural Networks (IJCNN) 2015. pp. 1–8. IEEE. Diehl PU, Neil D, Binas J, Cook M, Liu SC, Pfeiffer M. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 International Joint Conference on Neural Networks (IJCNN) 2015. pp. 1–8. IEEE.
61.
Zurück zum Zitat Wu Y, Deng L, Li G, Zhu J, Shi L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci. 2018;12:331.CrossRef Wu Y, Deng L, Li G, Zhu J, Shi L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci. 2018;12:331.CrossRef
62.
Zurück zum Zitat Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018;99:56–67.CrossRef Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018;99:56–67.CrossRef
63.
Zurück zum Zitat Tavanaei A, Maida A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing. 2019;330:39–47.CrossRef Tavanaei A, Maida A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing. 2019;330:39–47.CrossRef
64.
Zurück zum Zitat Lee C, Srinivasan G, Panda P, Roy K. Deep spiking convolutional neural network trained with unsupervised spike-timing-dependent plasticity. IEEE Transactions on Cognitive and Developmental Systems. 2018;11(3):384–94. Lee C, Srinivasan G, Panda P, Roy K. Deep spiking convolutional neural network trained with unsupervised spike-timing-dependent plasticity. IEEE Transactions on Cognitive and Developmental Systems. 2018;11(3):384–94.
65.
Zurück zum Zitat Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Convolutional neural network committees for handwritten character classification. In 2011 International conference on document analysis and recognition, Beijing, China. 2011. pp. 1135-1139. Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Convolutional neural network committees for handwritten character classification. In 2011 International conference on document analysis and recognition, Beijing, China. 2011. pp. 1135-1139.
66.
67.
Zurück zum Zitat Cavalin P, Oliveira L. Confusion matrix-based building of hierarchical classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science; Springer: Berlin, Germany. 2019;11401:271–278. Cavalin P, Oliveira L. Confusion matrix-based building of hierarchical classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science; Springer: Berlin, Germany. 2019;11401:271–278.
68.
Zurück zum Zitat Singh S, Paul A, Arun M. Parallelization of digit recognition system using Deep Convolutional Neural Network on CUDA. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security, Chennai, India. 4–5 May 2017. pp. 379–383. Singh S, Paul A, Arun M. Parallelization of digit recognition system using Deep Convolutional Neural Network on CUDA. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security, Chennai, India. 4–5 May 2017. pp. 379–383.
69.
Zurück zum Zitat Baldominos A, Saez Y, Isasi P. Hybridizing evolutionary computation and deep neural networks: an approach to handwriting recognition using committees and transfer learning. Complexity 2019. 2019;2952304. Baldominos A, Saez Y, Isasi P. Hybridizing evolutionary computation and deep neural networks: an approach to handwriting recognition using committees and transfer learning. Complexity 2019. 2019;2952304.
70.
Zurück zum Zitat Peng Y, Yin H. Markov random field based convolutional neuralx networks for image classification. In IDEAL 2017: Intelligent Data Engineering and Automated Learning; Lecture Notes in Computer Science; Yin H, Gao Y, Chen S, Wen Y, Cai G, Gu T, Du J, Tallón-Ballesteros A, Zhang M, editors. Springer: Guilin, China. 2017;10585:387–396. Peng Y, Yin H. Markov random field based convolutional neuralx networks for image classification. In IDEAL 2017: Intelligent Data Engineering and Automated Learning; Lecture Notes in Computer Science; Yin H, Gao Y, Chen S, Wen Y, Cai G, Gu T, Du J, Tallón-Ballesteros A, Zhang M, editors. Springer: Guilin, China. 2017;10585:387–396.
71.
Zurück zum Zitat Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In Advances in Neural Information Processing Systems 30; NIPS Proceedings; Neural Information Processing Systems Foundation, Inc.: San Diego, CA, USA. 2017. pp. 548–556. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In Advances in Neural Information Processing Systems 30; NIPS Proceedings; Neural Information Processing Systems Foundation, Inc.: San Diego, CA, USA. 2017. pp. 548–556.
72.
Zurück zum Zitat Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D. Spinalnet: Deep neural network with gradual input. IEEE Transact Artif Intell. 2022. Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D. Spinalnet: Deep neural network with gradual input. IEEE Transact Artif Intell. 2022.
73.
Zurück zum Zitat Vaila R, Chiasson J, Saxena V. A deep unsupervised feature learning spiking neural network with binarized classification layers for the EMNIST classification. IEEE Transact Emerg Topics Comput Intell. 2020. Vaila R, Chiasson J, Saxena V. A deep unsupervised feature learning spiking neural network with binarized classification layers for the EMNIST classification. IEEE Transact Emerg Topics Comput Intell. 2020.
74.
Zurück zum Zitat Baldominos A, Saez Y, Isasi P. A survey of handwritten character recognition with mnist and emnist. Appl Sci. 2019;9(15):3169.CrossRef Baldominos A, Saez Y, Isasi P. A survey of handwritten character recognition with mnist and emnist. Appl Sci. 2019;9(15):3169.CrossRef
75.
Zurück zum Zitat Neftci E, Das S, Pedroni B, Kreutz-Delgado K, Cauwenberghs G. Event-driven contrastive divergence for spiking neuromorphic systems. 2013. Neftci E, Das S, Pedroni B, Kreutz-Delgado K, Cauwenberghs G. Event-driven contrastive divergence for spiking neuromorphic systems. 2013.
76.
Zurück zum Zitat Uçar MK, Nour M, Sindi H, Polat K. The effect of training and testing process on machine learning in biomedical datasets. Math Probl Eng. 2020 Uçar MK, Nour M, Sindi H, Polat K. The effect of training and testing process on machine learning in biomedical datasets. Math Probl Eng. 2020
77.
Zurück zum Zitat Sengupta A, Ye Y, Wang R, Liu C, Roy K. Going deeper in spiking neural networks: VGG and residual architectures. Front Neurosci. 2019;13:95.CrossRef Sengupta A, Ye Y, Wang R, Liu C, Roy K. Going deeper in spiking neural networks: VGG and residual architectures. Front Neurosci. 2019;13:95.CrossRef
78.
Zurück zum Zitat Rueckauer B, Lungu IA, Hu Y, Pfeiffer M, Liu SC. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front Neurosci. 2017;11:682.CrossRef Rueckauer B, Lungu IA, Hu Y, Pfeiffer M, Liu SC. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front Neurosci. 2017;11:682.CrossRef
79.
Zurück zum Zitat Rathi N, Srinivasan G, Panda P, Roy K. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. 2020. arXiv preprint arXiv:2005.01807. Rathi N, Srinivasan G, Panda P, Roy K. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. 2020. arXiv preprint arXiv:​2005.​01807.
80.
Zurück zum Zitat Nazari S, Faez K, Janahmadi M. A new approach to detect the coding rule of the cortical spiking model in the information transmission. Neural Netw. 2018;99:68–78.CrossRef Nazari S, Faez K, Janahmadi M. A new approach to detect the coding rule of the cortical spiking model in the information transmission. Neural Netw. 2018;99:68–78.CrossRef
81.
Zurück zum Zitat Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23(1):649–711.CrossRef Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23(1):649–711.CrossRef
82.
Zurück zum Zitat Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.CrossRef Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.CrossRef
Metadaten
Titel
A Novel Unsupervised Spatial–Temporal Learning Mechanism in a Bio-inspired Spiking Neural Network
verfasst von
Masoud Amiri
Amir Homayoun Jafari‬
Bahador Makkiabadi
Soheila Nazari
Publikationsdatum
16.12.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10097-1