2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Data Science
The construction of domain-specific sentiment lexicon has become an important direction to improve the performance of sentiment analysis in recent years. As one of the important application areas of sentiment analysis, the stock market also has some related researches. However, when considering the heterogeneity of the stock market relative to other fields, these studies ignore the heterogeneity of the stock market under different market conditions. At the same time, the annotated corpus is also indispensable for these studies, but the annotated corpus, especially the social media corpus that is not standardized, domain-specific and large in volume, is very difficult to obtain, manually labeling or automatic labeling has certain limitations. Besides, in the evaluation of the stock market sentiment lexicon, it is still based on the general classification algorithm evaluation criteria, but ignores the final application purpose of the sentiment analysis in the stock market: helping the stock market participants make investment decisions, that is, to achieve the highest profit. To address those problems, this paper proposes an unsupervised new method of constructing the stock market sentiment lexicon which based on the heterogeneity of the stock market, and an evaluation method of stock market sentiment lexicon. Subsequently, we selected four commonly used Chinese sentiment dictionaries as benchmark lexicons, and verified the method with an unlabeled Eastmoney stock posting corpus containing 15,733,552 posts about 2400 Chinese A-share listed companies. Finally, under our lexicon evaluation framework which based on the portfolio annualized return, the stock market sentiment lexicon constructed in this paper has achieved the best performance.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Antweiler, W., Frank, M.Z.: Is all that talk just noise? The information content of internet stock message boards. J. Finan. 59(3), 1259–1294 (2004). https://doi.org/10.1111/j.1540-6261.2004.00662.x CrossRef Antweiler, W., Frank, M.Z.: Is all that talk just noise? The information content of internet stock message boards. J. Finan.
59(3), 1259–1294 (2004).
https://doi.org/10.1111/j.1540-6261.2004.00662.x
CrossRef
2.
Zurück zum Zitat Bollen, J., et al.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011). https://doi.org/10.1016/j.jocs.2010.12.007 CrossRef Bollen, J., et al.: Twitter mood predicts the stock market. J. Comput. Sci.
2(1), 1–8 (2011).
https://doi.org/10.1016/j.jocs.2010.12.007
CrossRef
3.
Zurück zum Zitat Challa, M.L., et al.: Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex. Finan. Innov. 4(1), 24 (2018). https://doi.org/10.1186/S40854-018-0107-Z CrossRef Challa, M.L., et al.: Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex. Finan. Innov.
4(1), 24 (2018).
https://doi.org/10.1186/S40854-018-0107-Z
CrossRef
4.
Zurück zum Zitat Koppel, M., Shtrimberg, I.: Good news or bad news? Let the market decide. In: Shanahan, J.G., et al. (eds.) Computing Attitude and Affect in Text: Theory and Applications, pp. 297–301. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4102-0_22 CrossRef Koppel, M., Shtrimberg, I.: Good news or bad news? Let the market decide. In: Shanahan, J.G., et al. (eds.) Computing Attitude and Affect in Text: Theory and Applications, pp. 297–301. Springer, Dordrecht (2006).
https://doi.org/10.1007/1-4020-4102-0_22
CrossRef
5.
Zurück zum Zitat Li, Q., et al.: Media-aware quantitative trading based on public Web information. Decis. Support Syst. 61, 93–105 (2014). https://doi.org/10.1016/j.dss.2014.01.013 CrossRef Li, Q., et al.: Media-aware quantitative trading based on public Web information. Decis. Support Syst.
61, 93–105 (2014).
https://doi.org/10.1016/j.dss.2014.01.013
CrossRef
6.
Zurück zum Zitat Li, Q., et al.: The effect of news and public mood on stock movements. Inf. Sci. 278, 826–840 (2014). https://doi.org/10.1016/j.ins.2014.03.096 CrossRef Li, Q., et al.: The effect of news and public mood on stock movements. Inf. Sci.
278, 826–840 (2014).
https://doi.org/10.1016/j.ins.2014.03.096
CrossRef
7.
Zurück zum Zitat Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012). https://doi.org/10.2200/S00416ED1V01Y201204HLT016 CrossRef Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol.
5(1), 1–167 (2012).
https://doi.org/10.2200/S00416ED1V01Y201204HLT016
CrossRef
8.
Zurück zum Zitat Liu, Y., et al.: A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Inf. Sci. 394–395, 38–52 (2017). https://doi.org/10.1016/j.ins.2017.02.016 CrossRef Liu, Y., et al.: A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Inf. Sci.
394–395, 38–52 (2017).
https://doi.org/10.1016/j.ins.2017.02.016
CrossRef
9.
Zurück zum Zitat Liu, Y., et al.: A method for ranking products through online reviews based on sentiment classification and interval-valued intuitionistic fuzzy TOPSIS. Int. J. Inf. Tech. Decis. Making 16(6), 1497–1522 (2017). https://doi.org/10.1142/S021962201750033X CrossRef Liu, Y., et al.: A method for ranking products through online reviews based on sentiment classification and interval-valued intuitionistic fuzzy TOPSIS. Int. J. Inf. Tech. Decis. Making
16(6), 1497–1522 (2017).
https://doi.org/10.1142/S021962201750033X
CrossRef
10.
Zurück zum Zitat Loughran, T., Mcdonald, B.: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J. Finan. 66(1), 35–65 (2011). https://doi.org/10.1111/j.1540-6261.2010.01625.x CrossRef Loughran, T., Mcdonald, B.: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J. Finan.
66(1), 35–65 (2011).
https://doi.org/10.1111/j.1540-6261.2010.01625.x
CrossRef
11.
Zurück zum Zitat Mahendhiran, P.D., Kannimuthu, S.: Deep learning techniques for polarity classification in multimodal sentiment analysis. Int. J. Inf. Tech. Decis. Making 17(3), 883–910 (2018). https://doi.org/10.1142/S0219622018500128 CrossRef Mahendhiran, P.D., Kannimuthu, S.: Deep learning techniques for polarity classification in multimodal sentiment analysis. Int. J. Inf. Tech. Decis. Making
17(3), 883–910 (2018).
https://doi.org/10.1142/S0219622018500128
CrossRef
12.
Zurück zum Zitat Mao, H., et al.: Automatic construction of financial semantic orientation lexicon from large-scale Chinese news corpus. Institut Louis Bachelier 20(2), 1–18 (2014) Mao, H., et al.: Automatic construction of financial semantic orientation lexicon from large-scale Chinese news corpus. Institut Louis Bachelier
20(2), 1–18 (2014)
13.
Zurück zum Zitat Nayak, S.C., Misra, B.B.: Estimating stock closing indices using a GA-weighted condensed polynomial neural network. Finan. Innov. 4(1), 21 (2018). https://doi.org/10.1016/j.dss.2016.02.013 CrossRef Nayak, S.C., Misra, B.B.: Estimating stock closing indices using a GA-weighted condensed polynomial neural network. Finan. Innov.
4(1), 21 (2018).
https://doi.org/10.1016/j.dss.2016.02.013
CrossRef
14.
Zurück zum Zitat Oliveira, N., et al.: Stock market sentiment lexicon acquisition using microblogging data and statistical measures. Decis. Support Syst. 85, 62–73 (2016). https://doi.org/10.1186/S40854-018-0104-2 CrossRef Oliveira, N., et al.: Stock market sentiment lexicon acquisition using microblogging data and statistical measures. Decis. Support Syst.
85, 62–73 (2016).
https://doi.org/10.1186/S40854-018-0104-2
CrossRef
15.
Zurück zum Zitat Pang, B., Lee, L.: Opinion mining and sentiment analysis. Comput. Linguist. 35(2), 311–312 (2009). https://doi.org/10.1162/coli.2009.35.2.311 CrossRef Pang, B., Lee, L.: Opinion mining and sentiment analysis. Comput. Linguist.
35(2), 311–312 (2009).
https://doi.org/10.1162/coli.2009.35.2.311
CrossRef
16.
Zurück zum Zitat Rashid, A., Jabeen, N.: Financial frictions and the cash flow – external financing sensitivity: evidence from a panel of Pakistani firms. Finan. Innov. 4(1), 15 (2018). https://doi.org/10.1186/S40854-018-0100-6 CrossRef Rashid, A., Jabeen, N.: Financial frictions and the cash flow – external financing sensitivity: evidence from a panel of Pakistani firms. Finan. Innov.
4(1), 15 (2018).
https://doi.org/10.1186/S40854-018-0100-6
CrossRef
17.
Zurück zum Zitat Rosenthal, S., et al.: SemEval-2014 task 9: sentiment analysis in Twitter. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 73–80. Association for Computational Linguistics (2015). https://doi.org/10.3115/V1/S14-2009 Rosenthal, S., et al.: SemEval-2014 task 9: sentiment analysis in Twitter. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 73–80. Association for Computational Linguistics (2015).
https://doi.org/10.3115/V1/S14-2009
18.
Zurück zum Zitat Schumaker, R.P., et al.: Evaluating sentiment in financial news articles. Decis. Support Syst. 53(3), 458–464 (2012). https://doi.org/10.1016/j.dss.2012.03.001 CrossRef Schumaker, R.P., et al.: Evaluating sentiment in financial news articles. Decis. Support Syst.
53(3), 458–464 (2012).
https://doi.org/10.1016/j.dss.2012.03.001
CrossRef
19.
Zurück zum Zitat Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: the AZFin text system. ACM Trans. Inf. Syst. 27, 29 (2009) CrossRef Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: the AZFin text system. ACM Trans. Inf. Syst.
27, 29 (2009)
CrossRef
20.
Zurück zum Zitat Shleifer, A., Summers, L.H.: The noise trader approach to finance. J. Econ. Perspect. 4(2), 19–33 (1990). https://doi.org/10.1257/jep.4.2.19 CrossRef Shleifer, A., Summers, L.H.: The noise trader approach to finance. J. Econ. Perspect.
4(2), 19–33 (1990).
https://doi.org/10.1257/jep.4.2.19
CrossRef
21.
Zurück zum Zitat da Silva, N.F.F., et al.: Tweet sentiment analysis with classifier ensembles. Decis. Support Syst. 66, 170–179 (2014). https://doi.org/10.1016/j.dss.2014.07.003 CrossRef da Silva, N.F.F., et al.: Tweet sentiment analysis with classifier ensembles. Decis. Support Syst.
66, 170–179 (2014).
https://doi.org/10.1016/j.dss.2014.07.003
CrossRef
22.
Zurück zum Zitat Song, Y., et al.: Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR. Finan. Innov. 4(1), 2 (2018). https://doi.org/10.1186/S40854-018-0086-0 MathSciNetCrossRef Song, Y., et al.: Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR. Finan. Innov.
4(1), 2 (2018).
https://doi.org/10.1186/S40854-018-0086-0
MathSciNetCrossRef
23.
Zurück zum Zitat Sun, Y., et al.: A novel stock recommendation system using Guba sentiment analysis. Pers. Ubiquit. Comput. 22(3), 575–587 (2018). https://doi.org/10.1007/s00779-018-1121-x CrossRef Sun, Y., et al.: A novel stock recommendation system using Guba sentiment analysis. Pers. Ubiquit. Comput.
22(3), 575–587 (2018).
https://doi.org/10.1007/s00779-018-1121-x
CrossRef
24.
Zurück zum Zitat Turney, P.D., Littman, M.L.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Syst. 21(4), 315–346 (2003). https://doi.org/10.1145/944012.944013 CrossRef Turney, P.D., Littman, M.L.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Syst.
21(4), 315–346 (2003).
https://doi.org/10.1145/944012.944013
CrossRef
25.
Zurück zum Zitat Wang, N., et al.: Textual sentiment of Chinese microblog toward the stock market. Int. J. Inf. Technol. Decis. Making (IJITDM) 18(02), 649–671 (2019). https://doi.org/10.1142/S0219622019500068 CrossRef Wang, N., et al.: Textual sentiment of Chinese microblog toward the stock market. Int. J. Inf. Technol. Decis. Making (IJITDM)
18(02), 649–671 (2019).
https://doi.org/10.1142/S0219622019500068
CrossRef
26.
Zurück zum Zitat Yousaf, I., et al.: Herding behavior in Ramadan and financial crises: the case of the Pakistani stock market. Finan. Innov. 4(1), 16 (2018). https://doi.org/10.1186/S40854-018-0098-9 CrossRef Yousaf, I., et al.: Herding behavior in Ramadan and financial crises: the case of the Pakistani stock market. Finan. Innov.
4(1), 16 (2018).
https://doi.org/10.1186/S40854-018-0098-9
CrossRef
27.
Zurück zum Zitat Yuen, R.W.M., et al.: Morpheme-based derivation of bipolar semantic orientation of Chinese words. In: Proceedings of the 20th International Conference on Computational Linguistics. Association for Computational Linguistics, Stroudsburg (2004). https://doi.org/10.3115/1220355.1220500 Yuen, R.W.M., et al.: Morpheme-based derivation of bipolar semantic orientation of Chinese words. In: Proceedings of the 20th International Conference on Computational Linguistics. Association for Computational Linguistics, Stroudsburg (2004).
https://doi.org/10.3115/1220355.1220500
- Titel
- A Novel Way to Build Stock Market Sentiment Lexicon
- DOI
- https://doi.org/10.1007/978-981-15-2810-1_34
- Autoren:
-
Yangcheng Liu
Fawaz E. Alsaadi
- Verlag
- Springer Singapore
- Sequenznummer
- 34