Skip to main content
Erschienen in:

27.04.2022 | Original Article

A numerical approach for optimization of the working fluid of a standing-wave thermo-acoustic refrigerator

verfasst von: R. Rahpeima, R. Ebrahimi

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of refrigeration systems using thermo-acoustic technology is a novel solution for achieving environmentally friendly refrigerators. A full transient CFD method is introduced here that can resemble the whole thermo-acoustic phenomena along with its different governing physics as a whole. The working fluid contributes critically to the thermo-acoustic refrigerators’ cooling performance. In this paper, unlike previous researches, all different possible combinations of noble gases are considered and the performance of the refrigerator from both aspects of cooling temperature and \({\mathrm{COP}}_{\mathrm{R}}\) are investigated to determine the optimized gas mixture among all combinations. For this purpose, the effect of the sound intensity and the fluid’s Prandtl number as two key factors are investigated on the refrigeration performance. By considering a 2D-axisymmetric computational geometry resembling the real model, it is tried to attain results as reliable as possible. COMSOL software is used to perform the simulations. It is concluded that from the aspect of the cooling temperature, a sample with the highest sound intensity (pure He sample in this research) is the best. But, from the aspect of a higher \({\mathrm{COP}}_{\mathrm{R}}\) (relative coefficient of performance), a sample with the lowest Pr number (72%He–28%Xe sample in this research) would be the best. The lowest cooling temperature which is achieved by the pure He sample was about 273 K and the highest \({\mathrm{COP}}_{\mathrm{R}}\) which belongs to 72%He–28%Xe sample was approximately 0.335.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Shipboard Electronics Thermoacoustic Chiller.
 
2
Thermoacoustically Driven Thermoacoustic Refrigerator.
 
3
Relative coefficient of performance.
 
Literatur
1.
Zurück zum Zitat Rott N (1980) Thermoacoustics. Adv Appl Mech 20:135–175MATH Rott N (1980) Thermoacoustics. Adv Appl Mech 20:135–175MATH
2.
Zurück zum Zitat Swift GW (1988) Thermoacoustic engines. J Acoust Soc Am 84(4):1145–1180 Swift GW (1988) Thermoacoustic engines. J Acoust Soc Am 84(4):1145–1180
3.
Zurück zum Zitat Rott N (1975) Thermally driven acoustic oscillations, part III: Second-order heat flux. Zeitschrift für angewandte Mathematik und Physik ZAMP 26(1):43–49 Rott N (1975) Thermally driven acoustic oscillations, part III: Second-order heat flux. Zeitschrift für angewandte Mathematik und Physik ZAMP 26(1):43–49
4.
Zurück zum Zitat Jin T et al (2015) Thermoacoustic prime movers and refrigerators: thermally powered engines without moving components. Energy 93:828–853 Jin T et al (2015) Thermoacoustic prime movers and refrigerators: thermally powered engines without moving components. Energy 93:828–853
5.
Zurück zum Zitat Wheatley J et al (1983) An intrinsically irreversible thermoacoustic heat engine. J Acoust Soc Am 74(1):153–170 Wheatley J et al (1983) An intrinsically irreversible thermoacoustic heat engine. J Acoust Soc Am 74(1):153–170
6.
Zurück zum Zitat Garrett SL, Adeff JA, Hofler TJ (1993) Thermoacoustic refrigerator for space applications. J Thermophys Heat Transfer 7(4):595–599 Garrett SL, Adeff JA, Hofler TJ (1993) Thermoacoustic refrigerator for space applications. J Thermophys Heat Transfer 7(4):595–599
7.
Zurück zum Zitat Ballister SC, McKelvey DJ (1995) Shipboard electronics thermoacoustic cooler. Naval Postgraduate School Monterey CA. Ballister SC, McKelvey DJ (1995) Shipboard electronics thermoacoustic cooler. Naval Postgraduate School Monterey CA.
8.
Zurück zum Zitat Adeff JA, Hofler TJ (2000) Design and construction of a solar-powdered, thermoacoustically driven, thermoacoustic refrigerator. J Acoust Soc Am 107(6):L37–L42 Adeff JA, Hofler TJ (2000) Design and construction of a solar-powdered, thermoacoustically driven, thermoacoustic refrigerator. J Acoust Soc Am 107(6):L37–L42
9.
Zurück zum Zitat Berson A et al (2011) Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator. Int J Heat Mass Transf 54(21):4730–4735MATH Berson A et al (2011) Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator. Int J Heat Mass Transf 54(21):4730–4735MATH
10.
Zurück zum Zitat Yahya SG, Mao X, Jaworski AJ (2017) Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators. Int J Refrig 75:52–63 Yahya SG, Mao X, Jaworski AJ (2017) Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators. Int J Refrig 75:52–63
11.
Zurück zum Zitat Raut AS, Wankhede US, Ramteke S (2019) Experimental study on the performance of standing wave thermoacoustic refrigeration system. Smart technologies for energy, environment and sustainable development. Springer, pp 635–641 Raut AS, Wankhede US, Ramteke S (2019) Experimental study on the performance of standing wave thermoacoustic refrigeration system. Smart technologies for energy, environment and sustainable development. Springer, pp 635–641
12.
Zurück zum Zitat Alamir MA (2019) Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. Int J Green Energy 16(8):639–651 Alamir MA (2019) Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. Int J Green Energy 16(8):639–651
13.
Zurück zum Zitat Wetzel M, Herman C (1997) Design optimization of thermoacoustic refrigerators. Int J Refrig 20(1):3–21 Wetzel M, Herman C (1997) Design optimization of thermoacoustic refrigerators. Int J Refrig 20(1):3–21
14.
Zurück zum Zitat Herman C, Lavin C, Trávníček ZK (2008) Performance of thermoacoustic refrigerators: cooling load and coefficient of performance. In: ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. American Society of Mechanical Engineers Herman C, Lavin C, Trávníček ZK (2008) Performance of thermoacoustic refrigerators: cooling load and coefficient of performance. In: ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. American Society of Mechanical Engineers
15.
Zurück zum Zitat Marx D, Blanc-Benon P (2004) Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator. AIAA J 42(7):1338MATH Marx D, Blanc-Benon P (2004) Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator. AIAA J 42(7):1338MATH
16.
Zurück zum Zitat Marx D, Blanc-Benon P (2005) Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator. J Acoust Soc Am 118(5):2993–2999 Marx D, Blanc-Benon P (2005) Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator. J Acoust Soc Am 118(5):2993–2999
17.
Zurück zum Zitat Jin T et al (2016) Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator. Energy Convers Manage 123:243–251 Jin T et al (2016) Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator. Energy Convers Manage 123:243–251
18.
Zurück zum Zitat Gholamrezaei M, Ghorbanian K (2016) Thermal analysis of shell-and-tube thermoacoustic heat exchangers. Entropy 18(8):301 Gholamrezaei M, Ghorbanian K (2016) Thermal analysis of shell-and-tube thermoacoustic heat exchangers. Entropy 18(8):301
19.
Zurück zum Zitat Mergen S, Yıldırım E, Turkoglu H (2019) Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple. Cryogenics 98:139–147 Mergen S, Yıldırım E, Turkoglu H (2019) Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple. Cryogenics 98:139–147
20.
Zurück zum Zitat Rahpeima R, Ebrahimi R (2019) Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator. Appl Therm Eng 149:1203–1214 Rahpeima R, Ebrahimi R (2019) Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator. Appl Therm Eng 149:1203–1214
21.
Zurück zum Zitat Alamir MA, Elamer AA (2020) A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator. Int J Ambient Energy 41(13):1441–1453 Alamir MA, Elamer AA (2020) A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator. Int J Ambient Energy 41(13):1441–1453
22.
Zurück zum Zitat Miled O, Dhahri H, Mhimid A (2020) Numerical investigation of porous stack for a solar-powered thermoacoustic refrigerator. Adv Mech Eng 12(6):1–14 Miled O, Dhahri H, Mhimid A (2020) Numerical investigation of porous stack for a solar-powered thermoacoustic refrigerator. Adv Mech Eng 12(6):1–14
23.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2020) Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan-Chen model. Eng Anal Boundary Elem 119:151–161MathSciNetMATH Abbaszadeh M, Dehghan M (2020) Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan-Chen model. Eng Anal Boundary Elem 119:151–161MathSciNetMATH
24.
Zurück zum Zitat Mohammadi V, Dehghan M (2020) A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres. Appl Numer Math 153:248–275MathSciNetMATH Mohammadi V, Dehghan M (2020) A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres. Appl Numer Math 153:248–275MathSciNetMATH
25.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2020) Direct meshless local Petrov-Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng Anal Boundary Elem 118:188–201MathSciNetMATH Abbaszadeh M, Dehghan M (2020) Direct meshless local Petrov-Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng Anal Boundary Elem 118:188–201MathSciNetMATH
27.
Zurück zum Zitat Ward WC, Swift GW (1994) Design environment for low-amplitude thermoacoustic engines. J Acoust Soc Am 95(6):3671–3672 Ward WC, Swift GW (1994) Design environment for low-amplitude thermoacoustic engines. J Acoust Soc Am 95(6):3671–3672
28.
Zurück zum Zitat Watanabe M, Prosperetti A, Yuan H (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J Acoust Soc Am 102(6):3484–3496 Watanabe M, Prosperetti A, Yuan H (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J Acoust Soc Am 102(6):3484–3496
29.
Zurück zum Zitat Yuan H, Karpov S, Prosperetti A (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations. J Acoust Soc Am 102(6):3497–3506 Yuan H, Karpov S, Prosperetti A (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations. J Acoust Soc Am 102(6):3497–3506
30.
Zurück zum Zitat Salih A (2011) Conservation equations of fluid dynamics. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram Salih A (2011) Conservation equations of fluid dynamics. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram
31.
Zurück zum Zitat Dalton J (1802) On the expansion of elastic fluids by heat. J Nat Philos Chemis Arts 3:130–134 Dalton J (1802) On the expansion of elastic fluids by heat. J Nat Philos Chemis Arts 3:130–134
32.
Zurück zum Zitat Silberberg M (2018) Chemistry: the molecular nature of matter and change with advanced topics. McGraw-Hill, New York Silberberg M (2018) Chemistry: the molecular nature of matter and change with advanced topics. McGraw-Hill, New York
33.
Zurück zum Zitat Davidson TA (1993) A simple and accurate method for calculating viscosity of gaseous mixtures. US Department of the Interior, Bureau of Mines Davidson TA (1993) A simple and accurate method for calculating viscosity of gaseous mixtures. US Department of the Interior, Bureau of Mines
34.
Zurück zum Zitat Gray P, Wright P (1961) The thermal conductivity of mixtures of nitrogen, ammonia and hydrogen. Proc R Soc Lond Series A 263(1313):161–188 Gray P, Wright P (1961) The thermal conductivity of mixtures of nitrogen, ammonia and hydrogen. Proc R Soc Lond Series A 263(1313):161–188
35.
Zurück zum Zitat Wassiljewa A (1904) Heat conduction in gas mixtures. Physikalische Zeitschrift 5(22):737–742MATH Wassiljewa A (1904) Heat conduction in gas mixtures. Physikalische Zeitschrift 5(22):737–742MATH
36.
Zurück zum Zitat Mason E, Saxena S (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys fluids 1(5):361–369MathSciNet Mason E, Saxena S (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys fluids 1(5):361–369MathSciNet
37.
Zurück zum Zitat Sutherland W (1893) LII. The viscosity of gases and molecular force. Lond Edinburgh Dublin Philos Mag J Sci 36(223):507–531MATH Sutherland W (1893) LII. The viscosity of gases and molecular force. Lond Edinburgh Dublin Philos Mag J Sci 36(223):507–531MATH
38.
Zurück zum Zitat Russell DA, Weibull P (2002) Tabletop thermoacoustic refrigerator for demonstrations. Am J Phys 70(12):1231–1233 Russell DA, Weibull P (2002) Tabletop thermoacoustic refrigerator for demonstrations. Am J Phys 70(12):1231–1233
39.
Zurück zum Zitat Pedagopu VM, Pattapu K (2013) A novel approach to design and fabrication of thermo-acoustic refrigerator using high amplitude sound waves. IOSR J Mech Civ Eng 8: 15–24 Pedagopu VM, Pattapu K (2013) A novel approach to design and fabrication of thermo-acoustic refrigerator using high amplitude sound waves. IOSR J Mech Civ Eng 8: 15–24
40.
Zurück zum Zitat Belcher JR et al (1999) Working gases in thermoacoustic engines. J Acoust Soc Am 105(5):2677–2684 Belcher JR et al (1999) Working gases in thermoacoustic engines. J Acoust Soc Am 105(5):2677–2684
41.
Zurück zum Zitat Tijani M, Zeegers J, De Waele A (2002) Prandtl number and thermoacoustic refrigerators. J Acoust Soc Am 112(1):134–143 Tijani M, Zeegers J, De Waele A (2002) Prandtl number and thermoacoustic refrigerators. J Acoust Soc Am 112(1):134–143
43.
Zurück zum Zitat Hilsenrath J (1955) Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam. 564. US Govt. Print. Off. Hilsenrath J (1955) Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam. 564. US Govt. Print. Off.
44.
Zurück zum Zitat Yaws CL (1995) Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases.: Inst of Chemical Engineers. Yaws CL (1995) Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases.: Inst of Chemical Engineers.
45.
Zurück zum Zitat Reid RC, JM Prausnitz and BE Poling (1987) The properties of gases and liquids, 4th edition, McGraw-Hill Reid RC, JM Prausnitz and BE Poling (1987) The properties of gases and liquids, 4th edition, McGraw-Hill
46.
Zurück zum Zitat Hirota K (1944) The quantum mechanical treatment of viscosity by use of the rigid elastic sphere model. II. The Sutherland constant. Bull Chem Soc Jpn 19(5):109–113MathSciNet Hirota K (1944) The quantum mechanical treatment of viscosity by use of the rigid elastic sphere model. II. The Sutherland constant. Bull Chem Soc Jpn 19(5):109–113MathSciNet
47.
Zurück zum Zitat Tan Z (2014) Air pollution and greenhouse gases: from basic concepts to engineering applications for air emission control. Springer, New York Tan Z (2014) Air pollution and greenhouse gases: from basic concepts to engineering applications for air emission control. Springer, New York
48.
Zurück zum Zitat Dua S et al (1994) Gravitational transport of particles in pure gases and gas mixtures. Aerosol Sci Technol 21(2):170–178 Dua S et al (1994) Gravitational transport of particles in pure gases and gas mixtures. Aerosol Sci Technol 21(2):170–178
49.
Zurück zum Zitat Kim J (2014) Architectural Acoustics. Sejin Co Kim J (2014) Architectural Acoustics. Sejin Co
50.
Zurück zum Zitat Films DT (2003) Mylar polyester film physical-thermal properties. DuPont Teijin Films, Hopewell Films DT (2003) Mylar polyester film physical-thermal properties. DuPont Teijin Films, Hopewell
53.
Zurück zum Zitat Fox RW, McDonald AT, Mitchell JW (2020) Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons, Hoboken Fox RW, McDonald AT, Mitchell JW (2020) Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons, Hoboken
55.
Zurück zum Zitat Ishikawa H, Mee DJ (2002) Numerical investigations of flow and energy fields near a thermoacoustic couple. J Acoust Soc Am 111(2):831–839 Ishikawa H, Mee DJ (2002) Numerical investigations of flow and energy fields near a thermoacoustic couple. J Acoust Soc Am 111(2):831–839
Metadaten
Titel
A numerical approach for optimization of the working fluid of a standing-wave thermo-acoustic refrigerator
verfasst von
R. Rahpeima
R. Ebrahimi
Publikationsdatum
27.04.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01646-1