Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2019

07.05.2019 | Original Research

A numerical method for a time-fractional advection–dispersion equation with a nonlinear source term

verfasst von: Carlos E. Mejía, Alejandro Piedrahita

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we propose an implicit finite-difference scheme to approximate the solution of an initial-boundary value problem for a time-fractional advection–dispersion equation with variable coefficients and a nonlinear source term. The time fractional derivative is taken in the sense of Caputo. The method is unconditionally stable and convergent. Some numerical examples are included and the results confirm the theoretical analysis. One of the examples is the fractional Fisher equation of mathematical biology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alquran, M., Al-Khaled, K., Sardar, T., Chattopadhyay, J.: Revisited fishe’s equation in a new outlook: a fractional derivative approach. Physica A Stat. Mech. Appl. 438, 81–93 (2015)CrossRef Alquran, M., Al-Khaled, K., Sardar, T., Chattopadhyay, J.: Revisited fishe’s equation in a new outlook: a fractional derivative approach. Physica A Stat. Mech. Appl. 438, 81–93 (2015)CrossRef
2.
Zurück zum Zitat Choi, H.W., Chung, S.K., Lee, Y.J.: Numerical solutions for space fractional dispersion equations with nonlinear source terms. Bull. Korean Math. Soc. 47(6), 1225–1234 (2010)MathSciNetCrossRef Choi, H.W., Chung, S.K., Lee, Y.J.: Numerical solutions for space fractional dispersion equations with nonlinear source terms. Bull. Korean Math. Soc. 47(6), 1225–1234 (2010)MathSciNetCrossRef
3.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRef Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRef
4.
Zurück zum Zitat Echeverry, M.D., Mejía, C.E.: A two dimensional discrete mollification operator and the numerical solution of an inverse source problem. AXIOMS 7(4), 89 (2018)CrossRef Echeverry, M.D., Mejía, C.E.: A two dimensional discrete mollification operator and the numerical solution of an inverse source problem. AXIOMS 7(4), 89 (2018)CrossRef
5.
Zurück zum Zitat Fomin, S., Chugunov, V., Hashida, T.: Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transp. Porous Med. 81, 187–205 (2010)MathSciNetCrossRef Fomin, S., Chugunov, V., Hashida, T.: Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transp. Porous Med. 81, 187–205 (2010)MathSciNetCrossRef
6.
Zurück zum Zitat Guo, B., Pu, Z., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore (2015)CrossRef Guo, B., Pu, Z., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore (2015)CrossRef
7.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef Lin, Y., Xu, C.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef
8.
Zurück zum Zitat Mejía, C.E., Piedrahita, A.: Solution of a time fractional inverse advection–dispersion problem by discrete mollification. Revista Colombiana de Matemáticas 51(1), 83–102 (2017)MathSciNetCrossRef Mejía, C.E., Piedrahita, A.: Solution of a time fractional inverse advection–dispersion problem by discrete mollification. Revista Colombiana de Matemáticas 51(1), 83–102 (2017)MathSciNetCrossRef
9.
Zurück zum Zitat Mejía, C.E., Piedrahita, A.: A finite difference approximation of a two dimensional time fractional advection-dispersion problem. (2018). arXiv:1807.07393 Mejía, C.E., Piedrahita, A.: A finite difference approximation of a two dimensional time fractional advection-dispersion problem. (2018). arXiv:​1807.​07393
10.
Zurück zum Zitat Mirzazadeh, M.: A novel approach for solving fractional fisher equation using differential transform method. PRAMANA J. Phys. 86(5), 957–963 (2016)CrossRef Mirzazadeh, M.: A novel approach for solving fractional fisher equation using differential transform method. PRAMANA J. Phys. 86(5), 957–963 (2016)CrossRef
11.
Zurück zum Zitat Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)MathSciNetCrossRef Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)MathSciNetCrossRef
12.
Zurück zum Zitat Momani, S.: An algorithm for solving the fractional convection–diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 12, 1283–1290 (2007)MathSciNetCrossRef Momani, S.: An algorithm for solving the fractional convection–diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 12, 1283–1290 (2007)MathSciNetCrossRef
13.
Zurück zum Zitat Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)MathSciNetMATH Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)MathSciNetMATH
14.
Zurück zum Zitat Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)MathSciNetCrossRef Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)MathSciNetCrossRef
15.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, Mineola (2006)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, Mineola (2006)MATH
16.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH
17.
Zurück zum Zitat Singh, M.K., Chatterjee, A., Singh, V.P.: Solution of one-dimensional time fractional advection dispersion equation by homotopy analysis method. J. Eng. Mech. 143(9), 04017103 (2017)CrossRef Singh, M.K., Chatterjee, A., Singh, V.P.: Solution of one-dimensional time fractional advection dispersion equation by homotopy analysis method. J. Eng. Mech. 143(9), 04017103 (2017)CrossRef
18.
Zurück zum Zitat Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)MathSciNetCrossRef Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)MathSciNetCrossRef
19.
Zurück zum Zitat Veeresha, P., Prakasha, D.G., Baskonus, H.M.: Novel simulations to the time-fractional fisher’s equation. Math. Sci. 13, 33–42 (2019)MathSciNetCrossRef Veeresha, P., Prakasha, D.G., Baskonus, H.M.: Novel simulations to the time-fractional fisher’s equation. Math. Sci. 13, 33–42 (2019)MathSciNetCrossRef
20.
Zurück zum Zitat Zhang, X., He, Y., Wei, L., Tang, B., Wang, S.: A fully discrete local discontinuous galerkin method for one-dimensional time-fractional fisher’s equation. Int. J. Comput. Math. 91(9), 2021–2038 (2014)MathSciNetCrossRef Zhang, X., He, Y., Wei, L., Tang, B., Wang, S.: A fully discrete local discontinuous galerkin method for one-dimensional time-fractional fisher’s equation. Int. J. Comput. Math. 91(9), 2021–2038 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)CrossRef Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)CrossRef
22.
Zurück zum Zitat Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)MathSciNetCrossRef Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)MathSciNetCrossRef
23.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)MathSciNetCrossRef
Metadaten
Titel
A numerical method for a time-fractional advection–dispersion equation with a nonlinear source term
verfasst von
Carlos E. Mejía
Alejandro Piedrahita
Publikationsdatum
07.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2019
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-019-01266-x

Weitere Artikel der Ausgabe 1-2/2019

Journal of Applied Mathematics and Computing 1-2/2019 Zur Ausgabe