Skip to main content
Erschienen in: Meccanica 13/2018

14.08.2018

A numerical model based on Voronoi tessellation for the simulation of the mechanical response of porous shape memory alloys

verfasst von: M. R. Karamooz-Ravari, B. Shahriari

Erschienen in: Meccanica | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, porous shape memory alloys have found several industrial applications. Thanks to biocompatibility, corrosion resistance, and superior mechanical properties, porous NiTi has been introduced as a promising candidate for being used as bone scaffolds. Since the mechanical response of a scaffold is of importance in order to prevent stress-shielding phenomena and trigger ossteointegration, predicting the mechanical response of these scaffolds before fabrication is inevitable. In this paper, a new mesoscale model based on Voronoi tessellation of three-dimensional space is presented for the simulation of porous shape memory alloys. To do so, after tessellating the space, some cells are selected randomly to be assigned as pores and a suitable constitutive model of dense SMA is attributed to the other cells. The model is validated against experimental findings reported in the literature demonstrating good agreement. In addition, the effects of number of cells, level of randomness, and the type of boundary conditions on the stress–strain response is assessed. The results show that in order to achieve desirable results, the number of cells and the value of randomness must be chosen greater than minimum corresponding values. As another result, the geometrically periodic model is more computationally efficient than the mechanically periodic one.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRef Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRef
2.
Zurück zum Zitat Chu C, Chung C, Lin P, Wang S (2004) Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater Sci Eng A 366(1):114–119CrossRef Chu C, Chung C, Lin P, Wang S (2004) Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater Sci Eng A 366(1):114–119CrossRef
3.
Zurück zum Zitat Bewerse C, Brinson L, Dunand D (2014) NiTi with 3D-interconnected microchannels produced by liquid phase sintering and electrochemical dissolution of steel tubes. J Mater Process Technol 214(9):1895–1899CrossRef Bewerse C, Brinson L, Dunand D (2014) NiTi with 3D-interconnected microchannels produced by liquid phase sintering and electrochemical dissolution of steel tubes. J Mater Process Technol 214(9):1895–1899CrossRef
4.
Zurück zum Zitat Liu X, Wu S, Yeung KW, Chan Y, Hu T, Xu Z, Liu X, Chung JC, Cheung KM, Chu PK (2011) Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials 32(2):330–338CrossRef Liu X, Wu S, Yeung KW, Chan Y, Hu T, Xu Z, Liu X, Chung JC, Cheung KM, Chu PK (2011) Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials 32(2):330–338CrossRef
5.
Zurück zum Zitat Entchev PB, Lagoudas DC (2002) Modeling porous shape memory alloys using micromechanical averaging techniques. Mech Mater 34(1):1–24CrossRef Entchev PB, Lagoudas DC (2002) Modeling porous shape memory alloys using micromechanical averaging techniques. Mech Mater 34(1):1–24CrossRef
6.
Zurück zum Zitat Entchev PB, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response. Mech Mater 36(9):893–913CrossRef Entchev PB, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response. Mech Mater 36(9):893–913CrossRef
7.
Zurück zum Zitat Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36(9):865–892CrossRef Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36(9):865–892CrossRef
8.
Zurück zum Zitat Zhao Y, Taya M, Kang Y, Kawasaki A (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337–343CrossRef Zhao Y, Taya M, Kang Y, Kawasaki A (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337–343CrossRef
9.
Zurück zum Zitat Nemat-Nasser S, Su Y, Guo W-G, Isaacs J (2005) Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J Mech Phys Solids 53(10):2320–2346ADSCrossRef Nemat-Nasser S, Su Y, Guo W-G, Isaacs J (2005) Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J Mech Phys Solids 53(10):2320–2346ADSCrossRef
10.
Zurück zum Zitat Zhao Y, Taya M (2007) Analytical modeling for stress-strain curve of a porous NiTi. J Appl Mech 74(2):291–297CrossRefMATH Zhao Y, Taya M (2007) Analytical modeling for stress-strain curve of a porous NiTi. J Appl Mech 74(2):291–297CrossRefMATH
11.
Zurück zum Zitat Toi Y, Choi D (2008) Constitutive modeling of porous shape memory alloys considering strain rate effect. J Comput Sci Technol 2(4):511–522CrossRef Toi Y, Choi D (2008) Constitutive modeling of porous shape memory alloys considering strain rate effect. J Comput Sci Technol 2(4):511–522CrossRef
12.
Zurück zum Zitat Liu B, Dui G, Zhu Y, Selvadurai A, Selvadurai P, Liu AC-M, Yang C-C, Huang S-Y, Chen W-H, Wu C-H (2010) Comparison of constitutive models using different yield functions for porous shape memory alloy with experimental date. Struct Longev 4(3):113–120 Liu B, Dui G, Zhu Y, Selvadurai A, Selvadurai P, Liu AC-M, Yang C-C, Huang S-Y, Chen W-H, Wu C-H (2010) Comparison of constitutive models using different yield functions for porous shape memory alloy with experimental date. Struct Longev 4(3):113–120
13.
Zurück zum Zitat Zhu Y, Dui G (2011) A model considering hydrostatic stress of porous NiTi shape memory alloy. Acta Mech Solida Sin 24(4):289–298CrossRef Zhu Y, Dui G (2011) A model considering hydrostatic stress of porous NiTi shape memory alloy. Acta Mech Solida Sin 24(4):289–298CrossRef
14.
Zurück zum Zitat Olsen J, Zhang Z (2012) Effect of spherical micro-voids in shape memory alloys subjected to uniaxial loading. Int J Solids Struct 49(14):1947–1960CrossRef Olsen J, Zhang Z (2012) Effect of spherical micro-voids in shape memory alloys subjected to uniaxial loading. Int J Solids Struct 49(14):1947–1960CrossRef
15.
Zurück zum Zitat Liu B, Dui G, Xie B, Xue L (2014) A constitutive model of porous SMAs considering tensile–compressive asymmetry behaviors. J Mech Behav Biomed Mater 32:185–191CrossRef Liu B, Dui G, Xie B, Xue L (2014) A constitutive model of porous SMAs considering tensile–compressive asymmetry behaviors. J Mech Behav Biomed Mater 32:185–191CrossRef
16.
Zurück zum Zitat Lagoudas DC, Entchev PB, Vandygriff EL Effect of transformation induced plasticity on the mechanical behavior of porous SMAs. In: SPIE’s 9th annual international symposium on smart structures and materials, 2002. International society for optics and photonics, pp 224–234 Lagoudas DC, Entchev PB, Vandygriff EL Effect of transformation induced plasticity on the mechanical behavior of porous SMAs. In: SPIE’s 9th annual international symposium on smart structures and materials, 2002. International society for optics and photonics, pp 224–234
17.
Zurück zum Zitat Sepe V, Marfia S, Auricchio F (2014) Response of porous SMA: a micromechanical study. Frattura ed Integrità Strutturale 29:85CrossRef Sepe V, Marfia S, Auricchio F (2014) Response of porous SMA: a micromechanical study. Frattura ed Integrità Strutturale 29:85CrossRef
18.
Zurück zum Zitat Sepe V, Auricchio F, Marfia S, Sacco E (2015) Micromechanical analysis of porous SMA. Smart Mater Struct 24(8):085035ADSCrossRefMATH Sepe V, Auricchio F, Marfia S, Sacco E (2015) Micromechanical analysis of porous SMA. Smart Mater Struct 24(8):085035ADSCrossRefMATH
19.
Zurück zum Zitat Sepe V, Auricchio F, Marfia S, Sacco E (2016) Homogenization techniques for the analysis of porous SMA. Comput Mech 57(5):755–772MathSciNetCrossRefMATH Sepe V, Auricchio F, Marfia S, Sacco E (2016) Homogenization techniques for the analysis of porous SMA. Comput Mech 57(5):755–772MathSciNetCrossRefMATH
20.
Zurück zum Zitat Qidwai MA, Entchev PB, Lagoudas DC, DeGiorgi VG (2001) Modeling of the thermomechanical behavior of porous shape memory alloys. Int J Solids Struct 38(48):8653–8671CrossRefMATH Qidwai MA, Entchev PB, Lagoudas DC, DeGiorgi VG (2001) Modeling of the thermomechanical behavior of porous shape memory alloys. Int J Solids Struct 38(48):8653–8671CrossRefMATH
21.
Zurück zum Zitat DeGiorgi VG, Qidwai MA (2002) A computational mesoscale evaluation of material characteristics of porous shape memory alloys. Smart Mater Struct 11(3):435ADSCrossRef DeGiorgi VG, Qidwai MA (2002) A computational mesoscale evaluation of material characteristics of porous shape memory alloys. Smart Mater Struct 11(3):435ADSCrossRef
22.
Zurück zum Zitat Qidwai MA, DeGiorgi VG (2003) Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite. Smart Mater Struct 13(1):134ADSCrossRef Qidwai MA, DeGiorgi VG (2003) Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite. Smart Mater Struct 13(1):134ADSCrossRef
23.
Zurück zum Zitat Shaw JA, Churchill C, Grummon D, Triantafyllidis N, Michailidis P, Foltz J Shape memory alloy honeycombs: experiments & simulation. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 2007. pp 428–436 Shaw JA, Churchill C, Grummon D, Triantafyllidis N, Michailidis P, Foltz J Shape memory alloy honeycombs: experiments & simulation. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 2007. pp 428–436
24.
Zurück zum Zitat Panico M, Brinson L (2008) Computational modeling of porous shape memory alloys. Int J Solids Struct 45(21):5613–5626CrossRefMATH Panico M, Brinson L (2008) Computational modeling of porous shape memory alloys. Int J Solids Struct 45(21):5613–5626CrossRefMATH
25.
Zurück zum Zitat Michailidis P, Triantafyllidis N, Shaw J, Grummon D (2009) Superelasticity and stability of a shape memory alloy hexagonal honeycomb under in-plane compression. Int J Solids Struct 46(13):2724–2738CrossRefMATH Michailidis P, Triantafyllidis N, Shaw J, Grummon D (2009) Superelasticity and stability of a shape memory alloy hexagonal honeycomb under in-plane compression. Int J Solids Struct 46(13):2724–2738CrossRefMATH
26.
Zurück zum Zitat Hassan MR, Scarpa F, Mohamed N (2009) In-plane tensile behavior of shape memory alloy honeycombs with positive and negative poisson’s ratio. J Intell Mater Syst Struct 20(8):897–905CrossRef Hassan MR, Scarpa F, Mohamed N (2009) In-plane tensile behavior of shape memory alloy honeycombs with positive and negative poisson’s ratio. J Intell Mater Syst Struct 20(8):897–905CrossRef
27.
Zurück zum Zitat El Sayed T, Gürses E, Siddiq A (2012) A phenomenological two-phase constitutive model for porous shape memory alloys. Comput Mater Sci 60:44–52CrossRef El Sayed T, Gürses E, Siddiq A (2012) A phenomenological two-phase constitutive model for porous shape memory alloys. Comput Mater Sci 60:44–52CrossRef
28.
Zurück zum Zitat Shariat BS, Liu Y, Rio G (2014) Numerical modelling of pseudoelastic behaviour of NiTi porous plates. J Intell Mater Syst Struct 25(12):1445–1455CrossRef Shariat BS, Liu Y, Rio G (2014) Numerical modelling of pseudoelastic behaviour of NiTi porous plates. J Intell Mater Syst Struct 25(12):1445–1455CrossRef
29.
Zurück zum Zitat Zhu P, Stebner AP, Brinson LC (2013) A numerical study of the coupling of elastic and transformation fields in pore arrays in shape memory alloy plates to advance porous structure design and optimization. Smart Mater Struct 22(9):094009ADSCrossRef Zhu P, Stebner AP, Brinson LC (2013) A numerical study of the coupling of elastic and transformation fields in pore arrays in shape memory alloy plates to advance porous structure design and optimization. Smart Mater Struct 22(9):094009ADSCrossRef
30.
Zurück zum Zitat Zhu P, Stebner AP, Brinson LC (2014) Plastic and transformation interactions of pores in shape memory alloy plates. Smart Mater Struct 23(10):104008ADSCrossRef Zhu P, Stebner AP, Brinson LC (2014) Plastic and transformation interactions of pores in shape memory alloy plates. Smart Mater Struct 23(10):104008ADSCrossRef
31.
Zurück zum Zitat Maîtrejean G, Terriault P, Devís Capilla D, Brailovski V (2014) Unit cell analysis of the superelastic behavior of open-cell tetrakaidecahedral shape memory alloy foam under quasi-static loading. Smart Mater Res 2014 Maîtrejean G, Terriault P, Devís Capilla D, Brailovski V (2014) Unit cell analysis of the superelastic behavior of open-cell tetrakaidecahedral shape memory alloy foam under quasi-static loading. Smart Mater Res 2014
32.
Zurück zum Zitat Rahmanian R, Moghaddam NS, Haberland C, Dean D, Miller M, Elahinia M (2014) Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring. International society for optics and photonics, pp 905814–905818 Rahmanian R, Moghaddam NS, Haberland C, Dean D, Miller M, Elahinia M (2014) Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring. International society for optics and photonics, pp 905814–905818
33.
Zurück zum Zitat Andani MT, Haberland C, Walker JM, Karamooz Ravari MR, Turabi AS, Saedi S, Rahmanian R, Karaca H, Dean D, Kadkhodaei M (2016) Achieving biocompatible stiffness in NiTi through additive manufacturing. J Intell Mater Syst Struct 1045389X16641199 Andani MT, Haberland C, Walker JM, Karamooz Ravari MR, Turabi AS, Saedi S, Rahmanian R, Karaca H, Dean D, Kadkhodaei M (2016) Achieving biocompatible stiffness in NiTi through additive manufacturing. J Intell Mater Syst Struct 1045389X16641199
34.
Zurück zum Zitat Karamooz Ravari M, Esfahani SN, Andani MT, Kadkhodaei M, Ghaei A, Karaca H, Elahinia M (2016) On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures. Smart Mater Struct 25(2):025008ADSCrossRef Karamooz Ravari M, Esfahani SN, Andani MT, Kadkhodaei M, Ghaei A, Karaca H, Elahinia M (2016) On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures. Smart Mater Struct 25(2):025008ADSCrossRef
35.
Zurück zum Zitat Karamooz Ravari M, Kadkhodaei M, Ghaei A (2015) A unit cell model for simulating the stress-strain response of porous shape memory alloys. J Mater Eng Perform 24(10):4096–4105CrossRef Karamooz Ravari M, Kadkhodaei M, Ghaei A (2015) A unit cell model for simulating the stress-strain response of porous shape memory alloys. J Mater Eng Perform 24(10):4096–4105CrossRef
36.
Zurück zum Zitat Karamooz Ravari MR, Kadkhodaei M, Ghaei A (2016) Effects of asymmetric material response on the mechanical behavior of porous shape memory alloys. J Intell Mater Syst Struct 27(12):1687–1701CrossRef Karamooz Ravari MR, Kadkhodaei M, Ghaei A (2016) Effects of asymmetric material response on the mechanical behavior of porous shape memory alloys. J Intell Mater Syst Struct 27(12):1687–1701CrossRef
37.
Zurück zum Zitat Maîtrejean G, Terriault P, Brailovski V (2013) Density dependence of the superelastic behavior of porous shape memory alloys: representative volume element and scaling relation approaches. Comput Mater Sci 77:93–101CrossRef Maîtrejean G, Terriault P, Brailovski V (2013) Density dependence of the superelastic behavior of porous shape memory alloys: representative volume element and scaling relation approaches. Comput Mater Sci 77:93–101CrossRef
38.
Zurück zum Zitat Maîtrejean G, Terriault P, Brailovski V (2013) Density dependence of the macroscale superelastic behavior of porous shape memory alloys: a two-dimensional approach. Smart Mater Res Maîtrejean G, Terriault P, Brailovski V (2013) Density dependence of the macroscale superelastic behavior of porous shape memory alloys: a two-dimensional approach. Smart Mater Res
39.
Zurück zum Zitat Liu B, Dui G, Zhu Y (2012) On phase transformation behavior of porous shape memory alloys. J Mech Behav Biomed Mater 5(1):9–15CrossRef Liu B, Dui G, Zhu Y (2012) On phase transformation behavior of porous shape memory alloys. J Mech Behav Biomed Mater 5(1):9–15CrossRef
40.
Zurück zum Zitat Ashrafi M, Arghavani J, Naghdabadi R, Sohrabpour S (2015) A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. J Mech Behav Biomed Mater 42:292–310CrossRef Ashrafi M, Arghavani J, Naghdabadi R, Sohrabpour S (2015) A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. J Mech Behav Biomed Mater 42:292–310CrossRef
41.
Zurück zum Zitat Kadkhodaei M, Salimi M, Rajapakse R, Mahzoon M (2007) Microplane modelling of shape memory alloys. Phys Scr T129:329ADSCrossRef Kadkhodaei M, Salimi M, Rajapakse R, Mahzoon M (2007) Microplane modelling of shape memory alloys. Phys Scr T129:329ADSCrossRef
42.
Zurück zum Zitat Kadkhodaei M, Salimi MH, Rajapakse R, Mahzoon M (2007) Modeling of shape memory alloys based on microplane theory. J Intell Mater Syst Struct Kadkhodaei M, Salimi MH, Rajapakse R, Mahzoon M (2007) Modeling of shape memory alloys based on microplane theory. J Intell Mater Syst Struct
43.
Zurück zum Zitat Karamooz Ravari M, Kadkhodaei M, Ghaei A (2015) A microplane constitutive model for shape memory alloys considering tension–compression asymmetry. Smart Mater Struct 24(7):075016ADSCrossRef Karamooz Ravari M, Kadkhodaei M, Ghaei A (2015) A microplane constitutive model for shape memory alloys considering tension–compression asymmetry. Smart Mater Struct 24(7):075016ADSCrossRef
44.
Zurück zum Zitat Mehrabi R, Andani MT, Elahinia M, Kadkhodaei M (2014) Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling. Mech Mater Mehrabi R, Andani MT, Elahinia M, Kadkhodaei M (2014) Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling. Mech Mater
45.
Zurück zum Zitat Mehrabi R, Kadkhodaei M (2013) 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory. Smart Mater Struct 22(2):025017ADSCrossRef Mehrabi R, Kadkhodaei M (2013) 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory. Smart Mater Struct 22(2):025017ADSCrossRef
46.
Zurück zum Zitat Mehrabi R, Kadkhodaei M, Andani MT, Elahinia M (2014) Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading. J Intell Mater Syst Struct. 1045389X14522532 Mehrabi R, Kadkhodaei M, Andani MT, Elahinia M (2014) Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension–torsion loading. J Intell Mater Syst Struct. 1045389X14522532
47.
Zurück zum Zitat Mehrabi R, Kadkhodaei M, Elahinia M (2014) A thermodynamically-consistent microplane model for shape memory alloys. Int J Solids Struct 51(14):2666–2675CrossRef Mehrabi R, Kadkhodaei M, Elahinia M (2014) A thermodynamically-consistent microplane model for shape memory alloys. Int J Solids Struct 51(14):2666–2675CrossRef
48.
Zurück zum Zitat Mehrabi R, Karamooz Ravari MR (2015) Simulation of superelastic SMA helical springs. Smart Struct Syst 16(1):183–194CrossRef Mehrabi R, Karamooz Ravari MR (2015) Simulation of superelastic SMA helical springs. Smart Struct Syst 16(1):183–194CrossRef
49.
Zurück zum Zitat Mehrabi R, Shirani M, Kadkhodaei M, Elahinia M (2015) Constitutive modeling of cyclic behavior in shape memory alloys. Int J Mech Sci 103:181–188CrossRef Mehrabi R, Shirani M, Kadkhodaei M, Elahinia M (2015) Constitutive modeling of cyclic behavior in shape memory alloys. Int J Mech Sci 103:181–188CrossRef
50.
Zurück zum Zitat Poorasadion S, Arghavani J, Naghdabadi R, Sohrabpour S (2013) An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element. J Intell Mater Syst Struct 1045389X13512187 Poorasadion S, Arghavani J, Naghdabadi R, Sohrabpour S (2013) An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element. J Intell Mater Syst Struct 1045389X13512187
51.
Zurück zum Zitat Karamooz-Ravari M, Shahriari B (2017) Numerical implementation of the microplane constitutive model for shape memory alloys. Proc Instit Mech Eng Part L J Mater Des Appl 1464420717708486 Karamooz-Ravari M, Shahriari B (2017) Numerical implementation of the microplane constitutive model for shape memory alloys. Proc Instit Mech Eng Part L J Mater Des Appl 1464420717708486
54.
Zurück zum Zitat Rycroft C (2009) Voro ++: A three-dimensional Voronoi cell library in C ++ Rycroft C (2009) Voro ++: A three-dimensional Voronoi cell library in C ++
55.
Zurück zum Zitat Li S (2008) Boundary conditions for unit cells from periodic microstructures and their implications. Compos Sci Technol 68(9):1962–1974CrossRef Li S (2008) Boundary conditions for unit cells from periodic microstructures and their implications. Compos Sci Technol 68(9):1962–1974CrossRef
56.
Zurück zum Zitat Li S, Wongsto A (2004) Unit cells for micromechanical analyses of particle-reinforced composites. Mech Mater 36(7):543–572CrossRef Li S, Wongsto A (2004) Unit cells for micromechanical analyses of particle-reinforced composites. Mech Mater 36(7):543–572CrossRef
57.
Zurück zum Zitat Shen H, Brinson LC (2006) A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium. J Mech Mater Struct 1(7):1179–1204CrossRef Shen H, Brinson LC (2006) A numerical investigation of the effect of boundary conditions and representative volume element size for porous titanium. J Mech Mater Struct 1(7):1179–1204CrossRef
Metadaten
Titel
A numerical model based on Voronoi tessellation for the simulation of the mechanical response of porous shape memory alloys
verfasst von
M. R. Karamooz-Ravari
B. Shahriari
Publikationsdatum
14.08.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 13/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0883-6

Weitere Artikel der Ausgabe 13/2018

Meccanica 13/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.