Skip to main content
Erschienen in: Journal of Materials Science 4/2018

23.10.2017 | Ceramics

A numerical study on anomalous behavior of piezoelectric response in functionally graded materials

verfasst von: Anuruddh Kumar, Anshul Sharma, Rahul Vaish, Rajeev Kumar, Satish Chandra Jain

Erschienen in: Journal of Materials Science | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finite element-based simulations have been performed on piezoelectric-based functionally graded materials (FGM). PZT (Lead zirconate titanate) and PVDF (Polyvinylidene fluoride) FGM composites have been investigated. Anomalous enhancement in output voltage has been observed at grading index n = 0.05 (Voltage = 210 V), which is 105 and 185% higher than the original material at n = 0 (PVDF) and n = ∞ (PZT), respectively. Further, role of Young’s modulus, dielectric constant, and piezoelectric constant was systematically investigated to understand this enhancement. It is found that performance of FGM not only relies on piezoelectric constants but also largely depends upon values of Young’s modulus and dielectric constant.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dong L, Zhao G, Xiong C, Quan H (2009) Effect of piezoelectric particles size distribution on electric properties of PZT/PVDF composites. Acta Mater Compos Sin 4:012–015 Dong L, Zhao G, Xiong C, Quan H (2009) Effect of piezoelectric particles size distribution on electric properties of PZT/PVDF composites. Acta Mater Compos Sin 4:012–015
2.
Zurück zum Zitat Rodel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681CrossRef Rodel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681CrossRef
3.
Zurück zum Zitat Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W (2016) Lead-free piezoceramics—Where to move on? J Materiomics 2(1):1–24CrossRef Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W (2016) Lead-free piezoceramics—Where to move on? J Materiomics 2(1):1–24CrossRef
4.
Zurück zum Zitat Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87CrossRef Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87CrossRef
5.
Zurück zum Zitat Rödel J, Jo W, Seifert KT, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177CrossRef Rödel J, Jo W, Seifert KT, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177CrossRef
6.
Zurück zum Zitat Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126CrossRef Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126CrossRef
7.
Zurück zum Zitat Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226(1):169–181CrossRef Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226(1):169–181CrossRef
8.
Zurück zum Zitat Ploss B, Ploss B, Shin FG, Chan HLW, Choy CL (2000) Pyroelectric or piezoelectric compensated ferroelectric composites. Appl Phys Lett 76(19):2776–2778CrossRef Ploss B, Ploss B, Shin FG, Chan HLW, Choy CL (2000) Pyroelectric or piezoelectric compensated ferroelectric composites. Appl Phys Lett 76(19):2776–2778CrossRef
9.
Zurück zum Zitat Chan HLW, Zhang QQ, Ng WY, Choy CL (2000) Dielectric permittivity of PCLT/PVDF-TRFE nanocomposites. IEEE Trans Dielectr Electr Insul 7(2):204–207CrossRef Chan HLW, Zhang QQ, Ng WY, Choy CL (2000) Dielectric permittivity of PCLT/PVDF-TRFE nanocomposites. IEEE Trans Dielectr Electr Insul 7(2):204–207CrossRef
10.
Zurück zum Zitat Han P, Pang S, Fan J, Shen X, Pan T (2013) Highly enhanced piezoelectric properties of PLZT/PVDF composite by tailoring the ceramic Curie temperature, particle size and volume fraction. Sens Actuators A 204:74–78CrossRef Han P, Pang S, Fan J, Shen X, Pan T (2013) Highly enhanced piezoelectric properties of PLZT/PVDF composite by tailoring the ceramic Curie temperature, particle size and volume fraction. Sens Actuators A 204:74–78CrossRef
11.
Zurück zum Zitat Kuang D, Li R, Pei J (2014) Polyamide 11/poly (vinylidene fluoride)/vinyl acetate-maleic anhydride copolymer as novel blends flexible materials for capacitors. Polymers 6(8):2146–2156CrossRef Kuang D, Li R, Pei J (2014) Polyamide 11/poly (vinylidene fluoride)/vinyl acetate-maleic anhydride copolymer as novel blends flexible materials for capacitors. Polymers 6(8):2146–2156CrossRef
12.
Zurück zum Zitat Yao L, Zhao HD, Dong ZY, Sun YF, Gao YF (2012) Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting key engineering materials. Trans Tech Publ 492:172–175 Yao L, Zhao HD, Dong ZY, Sun YF, Gao YF (2012) Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting key engineering materials. Trans Tech Publ 492:172–175
13.
Zurück zum Zitat Santos IA, Rosso JM, Cótica LF, Bonadio TG, Freitas VF, Guo R, Bhalla AS (2016) Dielectric and structural features of the environmentally friendly lead-free PVDF/Ba 0.3 Na 0.7 Ti 0.3 Nb 0.7 O 3 0-3 composite. Curr Appl Phys 16(11):1468–1472CrossRef Santos IA, Rosso JM, Cótica LF, Bonadio TG, Freitas VF, Guo R, Bhalla AS (2016) Dielectric and structural features of the environmentally friendly lead-free PVDF/Ba 0.3 Na 0.7 Ti 0.3 Nb 0.7 O 3 0-3 composite. Curr Appl Phys 16(11):1468–1472CrossRef
14.
Zurück zum Zitat Sharifi Olyaei N, Mohebi MM, Kaveh R (2017) Directional properties of ordered 3‐3 piezocomposites fabricated by sacrificial template. J Am Ceram Soc 100(4):1432–1439CrossRef Sharifi Olyaei N, Mohebi MM, Kaveh R (2017) Directional properties of ordered 3‐3 piezocomposites fabricated by sacrificial template. J Am Ceram Soc 100(4):1432–1439CrossRef
15.
Zurück zum Zitat Topolov VY, Bowen C, Bisegna P, Krivoruchko A (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195CrossRef Topolov VY, Bowen C, Bisegna P, Krivoruchko A (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195CrossRef
16.
Zurück zum Zitat Xu D, Du P, Wang J, Hou P, Huang S, Cheng X (2016) Design and properties of Gaussian-type 1–3 piezoelectric composites. Compos Struct 140:213–216CrossRef Xu D, Du P, Wang J, Hou P, Huang S, Cheng X (2016) Design and properties of Gaussian-type 1–3 piezoelectric composites. Compos Struct 140:213–216CrossRef
17.
Zurück zum Zitat Topolov VY, Bisegna P, Bowen CR (2014) Orientation effects and anisotropy of properties in 2–2 and related composites, piezo-active composites. Springer, Berlin, pp 43–88 Topolov VY, Bisegna P, Bowen CR (2014) Orientation effects and anisotropy of properties in 2–2 and related composites, piezo-active composites. Springer, Berlin, pp 43–88
18.
Zurück zum Zitat Steinhausen R, Pientschke C, Seifert W, Beige H (2004) In: IEEE Ultrasonics Symposium 2004. Finite element analysis of the thickness mode resonance of piezoelectric 1-3 fibre composites, pp. 1678–1681 Steinhausen R, Pientschke C, Seifert W, Beige H (2004) In: IEEE Ultrasonics Symposium 2004. Finite element analysis of the thickness mode resonance of piezoelectric 1-3 fibre composites, pp. 1678–1681
19.
Zurück zum Zitat Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52(5):746–775CrossRef Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52(5):746–775CrossRef
20.
Zurück zum Zitat Topolov VY, Bisegna P, Bowen CR (2013) Piezo-active composites: orientation effects and anisotropy factors. Springer, Berlin Topolov VY, Bisegna P, Bowen CR (2013) Piezo-active composites: orientation effects and anisotropy factors. Springer, Berlin
21.
Zurück zum Zitat Nan C-W, Weng G (2000) Influence of polarization orientation on the effective properties of piezoelectric composites. J Appl Phys 88(1):416–423CrossRef Nan C-W, Weng G (2000) Influence of polarization orientation on the effective properties of piezoelectric composites. J Appl Phys 88(1):416–423CrossRef
22.
Zurück zum Zitat Lam K, Chan H (2005) Piezoelectric and pyroelectric properties of 65PMN-35PT/P (VDF-TrFE) 0–3 composites. Compos Sci Technol 65(7):1107–1111CrossRef Lam K, Chan H (2005) Piezoelectric and pyroelectric properties of 65PMN-35PT/P (VDF-TrFE) 0–3 composites. Compos Sci Technol 65(7):1107–1111CrossRef
23.
Zurück zum Zitat Ren H, Fan H (2006) The role of piezoelectric rods in 1–3 composite for the hydrostatic response applications. Sens Actuators A 128(1):132–139CrossRef Ren H, Fan H (2006) The role of piezoelectric rods in 1–3 composite for the hydrostatic response applications. Sens Actuators A 128(1):132–139CrossRef
24.
Zurück zum Zitat Wu C, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3):809–812CrossRef Wu C, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3):809–812CrossRef
25.
Zurück zum Zitat Wu X-H, Chen C, Shen Y-P, Tian X-G (2002) A high order theory for functionally graded piezoelectric shells. Int J Solids Struct 39(20):5325–5344CrossRef Wu X-H, Chen C, Shen Y-P, Tian X-G (2002) A high order theory for functionally graded piezoelectric shells. Int J Solids Struct 39(20):5325–5344CrossRef
26.
Zurück zum Zitat Zhu X, Meng Z (1995) Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator. Sens Actuators A 48(3):169–176CrossRef Zhu X, Meng Z (1995) Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator. Sens Actuators A 48(3):169–176CrossRef
27.
28.
Zurück zum Zitat Nath R, Zhong S, Alpay SP, Huey BD, Cole MW (2008) Enhanced piezoelectric response from barium strontium titanate multilayer films. Appl Phys Lett 92(1):012916. doi:10.1063/1.2825287 CrossRef Nath R, Zhong S, Alpay SP, Huey BD, Cole MW (2008) Enhanced piezoelectric response from barium strontium titanate multilayer films. Appl Phys Lett 92(1):012916. doi:10.​1063/​1.​2825287 CrossRef
29.
Zurück zum Zitat Misirlioglu IB, Alpay SP (2017) Compositionally graded ferroelectrics as wide band gap semiconductors: electrical domain structures and the origin of low dielectric loss. Acta Mater 122:266–276CrossRef Misirlioglu IB, Alpay SP (2017) Compositionally graded ferroelectrics as wide band gap semiconductors: electrical domain structures and the origin of low dielectric loss. Acta Mater 122:266–276CrossRef
30.
Zurück zum Zitat Ghosh M, Rao MG (2013) Growth mechanism of ZnO nanostructures for ultra-high piezoelectric d 33 coefficient. Mater Express 3(4):319–327CrossRef Ghosh M, Rao MG (2013) Growth mechanism of ZnO nanostructures for ultra-high piezoelectric d 33 coefficient. Mater Express 3(4):319–327CrossRef
31.
Zurück zum Zitat Shaikh AS, Vest RW, Vest GM (1989) Dielectric properties of ultrafine grained BaTiO/sub 3. IEEE Trans Ultrason Ferroelectr Freq Control 36(4):407–412CrossRef Shaikh AS, Vest RW, Vest GM (1989) Dielectric properties of ultrafine grained BaTiO/sub 3. IEEE Trans Ultrason Ferroelectr Freq Control 36(4):407–412CrossRef
32.
Zurück zum Zitat Li R, Xue B, Pei J (2015) Enhancement of the dielectric performance of PA11/PVDF blends by a solution method with dimethyl sulfoxide. e-Polymers 15(6):439–445CrossRef Li R, Xue B, Pei J (2015) Enhancement of the dielectric performance of PA11/PVDF blends by a solution method with dimethyl sulfoxide. e-Polymers 15(6):439–445CrossRef
33.
Zurück zum Zitat Hosseini-Hashemi S, Taher HRD, Akhavan H, Omidi M (2010) Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl Math Model 34(5):1276–1291CrossRef Hosseini-Hashemi S, Taher HRD, Akhavan H, Omidi M (2010) Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl Math Model 34(5):1276–1291CrossRef
34.
Zurück zum Zitat Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRef Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRef
35.
Zurück zum Zitat Kumar A, Sharma A, Kumar R, Vaish R, Chauhan VS (2014) Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: a comparative study. J Asian Ceram Soc 2(2):138–143CrossRef Kumar A, Sharma A, Kumar R, Vaish R, Chauhan VS (2014) Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: a comparative study. J Asian Ceram Soc 2(2):138–143CrossRef
Metadaten
Titel
A numerical study on anomalous behavior of piezoelectric response in functionally graded materials
verfasst von
Anuruddh Kumar
Anshul Sharma
Rahul Vaish
Rajeev Kumar
Satish Chandra Jain
Publikationsdatum
23.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1719-9

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Science 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.