Skip to main content
Erschienen in: Theoretical and Computational Fluid Dynamics 1-2/2020

07.02.2020 | Original Article

A numerical study on heat transfer of a ferrofluid flow in a square cavity under simultaneous gravitational and magnetic convection

verfasst von: Lucas H. P. Cunha, Ivan R. Siqueira, Arthur A. R. Campos, Adriano P. Rosa, Taygoara F. Oliveira

Erschienen in: Theoretical and Computational Fluid Dynamics | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermomagnetic convection is based on the use of external magnetic fields to better control heat transfer fluxes in ferrofluids, finding important applications in engineering and many related areas. The improvement of such methods relies on fundamentally understanding the flow of ferrofluids under temperature gradients and external magnetic fields. However, the underlying physics of this phenomenon is very complex and not yet well characterized. The problem we analyze in this paper consists of a ferrofluid confined in a square cavity heated from the top and subjected to an external magnetic field applied in the horizontal direction. Differently from earlier investigations, this scenario leads to a clear competition between stabilizing gravitational forces and destabilizing magnetic forces; the unbalance between them drives the flow and dictates the mechanisms of heat transfer in the system. The problem is described by the equations of conservation of mass, momentum, and energy; both gravitational and magnetic effects are accounted for through the definition of the body force following the well-known Boussinesq approximation to express the ferrofluid’s density and magnetization as functions of temperature. The resulting set of fully coupled, nonlinear equations of the model is solved with a fully implicit finite element method. The results show that thermomagnetic convection increases convective heat transfer fluxes in the flow, but its net effects essentially depend on a complex balance among viscous, magnetic, and gravitational forces which determines the pattern of recirculation regions inside the cavity. There are two critical values associated with the external field’s intensity: the first marks the onset of thermomagnetic convection when the destabilizing magnetic effects become comparable to the stabilizing gravitational ones and the second corresponds to the external field’s strength that suffices to make the effects of gravity nearly negligible in the flow dynamics. The latter regime is dictated by a balance between viscous and magnetic forces only, and the corresponding numerical predictions agree notoriously well with a scaling analysis which suggests that \({\overline{\mathrm{Nu}}} \sim \mathrm{Ra}_\mathrm{m}^{1/4}\), where \({\overline{\mathrm{Nu}}}\) is the average Nusselt number at the isothermal walls and \(\mathrm{Ra}_\mathrm{m}\) is the magnetic Rayleigh number, a dimensionless parameter associated with the intensity of the external field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In general, the magnetic susceptibility is written as \(\chi = \chi (T,H)\), where \(H = ||{\varvec{H}}||\) is the intensity of the local magnetic field. Indeed, from the superparamagnetic theory for dilute ferrofluids [33], we have that \({\varvec{M}}= M_\mathrm{s} \mathcal {L}(\xi ) {\hat{{\varvec{H}}}}\), where \(M_\mathrm{s}\) is the saturation magnetization (that is, the maximum magnetization that can be achieved by the ferrofluid), \(\mathcal {L}(\xi ) = \coth (\xi ) - \xi ^{-1}\) is the Langevin function, and \({\hat{{\varvec{H}}}} = {\varvec{H}}/H\) is the unit vector along the direction of \({\varvec{H}}\). Here, \(\xi = \mu _0 mH/k_\mathrm{B} T\) is a dimensionless parameter that represents the ratio of magnetic-to-thermal energy, where m is the average intensity of the magnetic dipole of the suspended particles (which depends on their size and material) and \(k_\mathrm{B}\) is the Boltzmann constant. If the magnetic energy is much smaller than the thermal energy, which is the case considered herein, it follows that \(\xi \) is very small and the Langevin function can be approximated as \(\mathcal {L}(\xi ) \approx \xi /3\). Under this assumption, we have that \({\varvec{M}}= \chi (T){\varvec{H}}\) with \(\chi (T) = M_\mathrm{s} \mu _0 m/3k_\mathrm{B}T\).
 
2
In general, the local magnetic field is written as \({\varvec{H}}= {\varvec{H}}_\mathrm{e} + {\varvec{H}}_s\), where \({\varvec{H}}_s\) is the stray field (or demagnetizing field) that arises because of the interaction between the magnetization of the ferrofluid with the external magnetic field. However, if we assume that the saturation magnetization is much smaller than the external magnetic field, \({\varvec{H}}_s\) becomes negligible compared to \({\varvec{H}}_\mathrm{e}\) and hence \({\varvec{H}}\approx {\varvec{H}}_\mathrm{e}\). This approximation can be seen as a one-way coupling: the external magnetic field induces the ferrofluid flow, but the magnetic field created by the ferrofluid does not affect the external magnetic field in the flow domain.
 
3
The reference power-law curve used here is \({\overline{\hbox {Nu}}} = \exp [A\ln (\hbox {Ra}_\mathrm{m}) + B]\) with \(A \approx 0.2612\) and \(B \approx -1.5722\), obtained by fitting the results for \(\hbox {Ra} = 0\) in the range \(10^8 \le \hbox {Ra}_\mathrm{m} \le 10^9\).
 
Literatur
1.
Zurück zum Zitat Arpaci, V.S., Larsen, P.S.: Convection Heat Transfer. Prentice Hall, Upper Saddle River (1984) Arpaci, V.S., Larsen, P.S.: Convection Heat Transfer. Prentice Hall, Upper Saddle River (1984)
2.
Zurück zum Zitat Asfer, M., Mehta, B., Kumar, A., Khandekar, S., Panigrahi, P.K.: Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int. J. Heat Fluid Flow 59, 74–86 (2016) Asfer, M., Mehta, B., Kumar, A., Khandekar, S., Panigrahi, P.K.: Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int. J. Heat Fluid Flow 59, 74–86 (2016)
3.
Zurück zum Zitat Ashouri, M., Shafii, M.B.: Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity. J. Magn. Magn. Mater. 442, 270–278 (2017) Ashouri, M., Shafii, M.B.: Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity. J. Magn. Magn. Mater. 442, 270–278 (2017)
4.
Zurück zum Zitat Ashouri, M., Ebrahimi, B., Shafii, M.B., Saidi, M.H., Saidi, M.S.: Correlation for Nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation. J. Magn. Magn. Mater. 322(22), 3607–3613 (2010) Ashouri, M., Ebrahimi, B., Shafii, M.B., Saidi, M.H., Saidi, M.S.: Correlation for Nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation. J. Magn. Magn. Mater. 322(22), 3607–3613 (2010)
5.
Zurück zum Zitat Bahiraei, M., Hangi, M.: Flow and heat transfer characteristics of magnetic nanofluids: a review. J. Magn. Magn. Mater. 374, 125–138 (2015) Bahiraei, M., Hangi, M.: Flow and heat transfer characteristics of magnetic nanofluids: a review. J. Magn. Magn. Mater. 374, 125–138 (2015)
6.
Zurück zum Zitat Belyaev, A.V., Smorodin, B.L.: The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. J. Magn. Magn. Mater. 322(17), 2596–2606 (2010) Belyaev, A.V., Smorodin, B.L.: The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. J. Magn. Magn. Mater. 322(17), 2596–2606 (2010)
7.
Zurück zum Zitat Berkovsky, B.M., Fertman, V.E., Polevikov, V.K., Isaev, S.V.: Heat transfer across vertical ferrofluid layers. Int. J. Heat Mass Transf. 19(9), 981–986 (1976) Berkovsky, B.M., Fertman, V.E., Polevikov, V.K., Isaev, S.V.: Heat transfer across vertical ferrofluid layers. Int. J. Heat Mass Transf. 19(9), 981–986 (1976)
8.
Zurück zum Zitat Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003) Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003)
9.
Zurück zum Zitat Braithwaite, D., Beaugnon, E., Tournier, R.: Magnetically controlled convection in a paramagnetic fluid. Nature 354(6349), 134–136 (1991) Braithwaite, D., Beaugnon, E., Tournier, R.: Magnetically controlled convection in a paramagnetic fluid. Nature 354(6349), 134–136 (1991)
10.
Zurück zum Zitat Charles, S.W.: The preparation of magnetic fluids. In: Odenbach, S. (ed.) Ferrofluids: Magnetically Controllable Fluids and Their Applications, chap 1. Lectures Notes in Physics, vol. 594, pp. 3–18. Springer, Berlin (2002) Charles, S.W.: The preparation of magnetic fluids. In: Odenbach, S. (ed.) Ferrofluids: Magnetically Controllable Fluids and Their Applications, chap 1. Lectures Notes in Physics, vol. 594, pp. 3–18. Springer, Berlin (2002)
11.
Zurück zum Zitat Cunha, F., Couto, H., Marcelino, N.: A study on magnetic convection in a narrow rectangular cavity. Magnetohydrodynamics 43(4), 421–428 (2007) Cunha, F., Couto, H., Marcelino, N.: A study on magnetic convection in a narrow rectangular cavity. Magnetohydrodynamics 43(4), 421–428 (2007)
12.
Zurück zum Zitat Cunha, L.H.P., Siqueira, I.R., Oliveira, T.F., Ceniceros, H.D.: Field-induced control of ferrofluid emulsion rheology and droplet break-up in shear flows. Phys. Fluids 30(12), 122110 (2018) Cunha, L.H.P., Siqueira, I.R., Oliveira, T.F., Ceniceros, H.D.: Field-induced control of ferrofluid emulsion rheology and droplet break-up in shear flows. Phys. Fluids 30(12), 122110 (2018)
13.
Zurück zum Zitat de Vahl, Davis G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3(3), 249–264 (1983)MATH de Vahl, Davis G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3(3), 249–264 (1983)MATH
14.
Zurück zum Zitat Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, Oxford (1989)MATH Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, Oxford (1989)MATH
15.
Zurück zum Zitat Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40(4), 753–767 (1970)MATH Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40(4), 753–767 (1970)MATH
16.
Zurück zum Zitat Ganguly, R., Sen, S., Puri, I.K.: Thermomagnetic convection in a square enclosure using a line dipole. Phys. Fluids 16(7), 2228–2236 (2004)MATH Ganguly, R., Sen, S., Puri, I.K.: Thermomagnetic convection in a square enclosure using a line dipole. Phys. Fluids 16(7), 2228–2236 (2004)MATH
17.
Zurück zum Zitat Genc, S., Derin, B.: Synthesis and rheology of ferrofluids: a review. Curr. Opin. Chem. Eng. 3, 118–124 (2014) Genc, S., Derin, B.: Synthesis and rheology of ferrofluids: a review. Curr. Opin. Chem. Eng. 3, 118–124 (2014)
18.
Zurück zum Zitat Gontijo, R.G., Cunha, F.R.: Experimental investigation on thermo-magnetic convection inside cavities. J. Nanosci. Nanotechnol. 12(12), 9198–9207 (2012) Gontijo, R.G., Cunha, F.R.: Experimental investigation on thermo-magnetic convection inside cavities. J. Nanosci. Nanotechnol. 12(12), 9198–9207 (2012)
19.
Zurück zum Zitat Gui, N.G.J., Stanley, C., Nguyen, N.T., Rosengarten, G.: Ferrofluids for heat transfer enhancement under an external magnetic field. Int. J. Heat Mass Transf. 123, 110–21 (2018) Gui, N.G.J., Stanley, C., Nguyen, N.T., Rosengarten, G.: Ferrofluids for heat transfer enhancement under an external magnetic field. Int. J. Heat Mass Transf. 123, 110–21 (2018)
20.
Zurück zum Zitat Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids. Phys. Rev. E 70(2), 026313 (2004) Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids. Phys. Rev. E 70(2), 026313 (2004)
21.
Zurück zum Zitat Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids under alternating magnetic fields. Phys. Rev. E 71(6), 066311 (2005) Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids under alternating magnetic fields. Phys. Rev. E 71(6), 066311 (2005)
22.
Zurück zum Zitat Kefayati, G.R.: Lattice boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor. Comput. Fluid Dyn. 27, 865–883 (2013) Kefayati, G.R.: Lattice boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor. Comput. Fluid Dyn. 27, 865–883 (2013)
23.
Zurück zum Zitat Kikura, H., Sawada, T., Tanahashi, T.: Natural convection of a magnetic fluid in a cubic enclosure. J. Magn. Magn. Mater. 122(1–3), 315–318 (1993) Kikura, H., Sawada, T., Tanahashi, T.: Natural convection of a magnetic fluid in a cubic enclosure. J. Magn. Magn. Mater. 122(1–3), 315–318 (1993)
24.
Zurück zum Zitat Kolchanov, N.V., Putin, G.F.: Gravitational convection of magnetic colloid in a horizontal layer. Int. J. Heat Mass Transf. 89, 90–101 (2015) Kolchanov, N.V., Putin, G.F.: Gravitational convection of magnetic colloid in a horizontal layer. Int. J. Heat Mass Transf. 89, 90–101 (2015)
25.
Zurück zum Zitat Krakov, M.S., Nikiforov, I.V.: To the influence of uniform magnetic field on thermomagnetic convection in square cavity. J. Magn. Magn. Mater. 252, 209–211 (2002) Krakov, M.S., Nikiforov, I.V.: To the influence of uniform magnetic field on thermomagnetic convection in square cavity. J. Magn. Magn. Mater. 252, 209–211 (2002)
26.
Zurück zum Zitat Krakov, M.S., Nikiforov, I.V., Reks, A.G.: Influence of the uniform magnetic field on natural convection in cubic enclosure: experiment and numerical simulation. J. Magn. Magn. Mater. 289, 272–274 (2005) Krakov, M.S., Nikiforov, I.V., Reks, A.G.: Influence of the uniform magnetic field on natural convection in cubic enclosure: experiment and numerical simulation. J. Magn. Magn. Mater. 289, 272–274 (2005)
27.
Zurück zum Zitat Lewis, R.W., Nithiarasu, P., Seetharamu, K.N.: Fundamentals of the Finite Element Method for Heat and Fluid Flow. Wiley, New York (2004) Lewis, R.W., Nithiarasu, P., Seetharamu, K.N.: Fundamentals of the Finite Element Method for Heat and Fluid Flow. Wiley, New York (2004)
28.
Zurück zum Zitat Mehta, J.S., Kumar, R., Kumar, H., Garg, H.: Convective heat transfer enhancement using ferrofluid: a review. J. Therm. Sci. Eng. Appl. 10(2), 020801 (2018) Mehta, J.S., Kumar, R., Kumar, H., Garg, H.: Convective heat transfer enhancement using ferrofluid: a review. J. Therm. Sci. Eng. Appl. 10(2), 020801 (2018)
29.
Zurück zum Zitat Mukhopadhyay, A., Ganguly, R., Sen, S., Puri, I.K.: A scaling analysis to characterize thermomagnetic convection. Int. J. Heat Mass Transf. 48(17), 3485–3492 (2005)MATH Mukhopadhyay, A., Ganguly, R., Sen, S., Puri, I.K.: A scaling analysis to characterize thermomagnetic convection. Int. J. Heat Mass Transf. 48(17), 3485–3492 (2005)MATH
30.
Zurück zum Zitat Neuringer, J.L., Rosensweig, R.E.: Ferrohydrodynamics. Phys. Fluids 7(12), 1927–1937 (1964)MathSciNet Neuringer, J.L., Rosensweig, R.E.: Ferrohydrodynamics. Phys. Fluids 7(12), 1927–1937 (1964)MathSciNet
31.
Zurück zum Zitat Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids: a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013) Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids: a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)
32.
Zurück zum Zitat Rahman, H., Suslov, S.A.: Magneto-gravitational convection in a vertical layer of ferrofluid in a uniform oblique magnetic field. J. Fluid Mech. 795, 847–875 (2016)MathSciNetMATH Rahman, H., Suslov, S.A.: Magneto-gravitational convection in a vertical layer of ferrofluid in a uniform oblique magnetic field. J. Fluid Mech. 795, 847–875 (2016)MathSciNetMATH
33.
Zurück zum Zitat Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985) Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)
34.
Zurück zum Zitat Sawada, T., Kikura, H., Tanahashi, T.: Visualization of wall temperature distribution caused by natural convection of magnetic fluids in a cubic enclosure. Int. J. Appl. Electromagn. Mater. 4(4), 329–335 (1994) Sawada, T., Kikura, H., Tanahashi, T.: Visualization of wall temperature distribution caused by natural convection of magnetic fluids in a cubic enclosure. Int. J. Appl. Electromagn. Mater. 4(4), 329–335 (1994)
35.
Zurück zum Zitat Schwab, L., Hildebrandt, U., Stierstadt, K.: Magnetic Bénard convection. J. Magn. Magn. Mater. 39(1–2), 113–114 (1983) Schwab, L., Hildebrandt, U., Stierstadt, K.: Magnetic Bénard convection. J. Magn. Magn. Mater. 39(1–2), 113–114 (1983)
36.
Zurück zum Zitat Sheikholeslami, M., Rokni, H.B.: Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int. J. Heat Mass Transf. 115, 1203–1233 (2017) Sheikholeslami, M., Rokni, H.B.: Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int. J. Heat Mass Transf. 115, 1203–1233 (2017)
37.
Zurück zum Zitat Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018) Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)
38.
Zurück zum Zitat Sheikholeslami, M., Seyednezhad, M.: Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int. J. Heat Mass Transf. 114, 1169–1180 (2017) Sheikholeslami, M., Seyednezhad, M.: Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int. J. Heat Mass Transf. 114, 1169–1180 (2017)
39.
Zurück zum Zitat Sheikholeslami, M., Shehzad, S.A.: CVFEM for influence of external magnetic source on \({\rm Fe}_3{\rm O}_4-{\rm H}_2{\rm O}\) nanofluid behavior in a permeable cavity considering shape effect. Int. J. Heat Mass Transf. 115, 180–191 (2017) Sheikholeslami, M., Shehzad, S.A.: CVFEM for influence of external magnetic source on \({\rm Fe}_3{\rm O}_4-{\rm H}_2{\rm O}\) nanofluid behavior in a permeable cavity considering shape effect. Int. J. Heat Mass Transf. 115, 180–191 (2017)
40.
Zurück zum Zitat Sheikholeslami, M., Shehzad, S.A.: Numerical analysis of \({\rm Fe}_3{\rm O}_4-{\rm H}_2{\rm O}\) nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 118, 182–192 (2018) Sheikholeslami, M., Shehzad, S.A.: Numerical analysis of \({\rm Fe}_3{\rm O}_4-{\rm H}_2{\rm O}\) nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 118, 182–192 (2018)
41.
Zurück zum Zitat Sheikholeslami, M., Hayat, T., Alsaedi, A.: On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int. J. Heat Mass Transf. 115, 981–991 (2017) Sheikholeslami, M., Hayat, T., Alsaedi, A.: On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int. J. Heat Mass Transf. 115, 981–991 (2017)
42.
Zurück zum Zitat Sheikholeslami, M., Gerdroodbary, M.B., Mousavi, S.V., Ganji, D.D., Moradi, R.: Heat transfer enhancement of ferrofluid inside an 90\(^{\circ }\) elbow channel by non-uniform magnetic field. J. Magn. Magn. Mater. 460, 302–311 (2018) Sheikholeslami, M., Gerdroodbary, M.B., Mousavi, S.V., Ganji, D.D., Moradi, R.: Heat transfer enhancement of ferrofluid inside an 90\(^{\circ }\) elbow channel by non-uniform magnetic field. J. Magn. Magn. Mater. 460, 302–311 (2018)
43.
Zurück zum Zitat Shliomis, M.I., Smorodin, B.L.: Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater. 252, 197–202 (2002) Shliomis, M.I., Smorodin, B.L.: Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater. 252, 197–202 (2002)
44.
Zurück zum Zitat Snyder, S.M., Cader, T., Finlayson, B.A.: Finite element model of magnetoconvection of a ferrofluid. J. Magn. Magn. Mater. 262(2), 269–279 (2003) Snyder, S.M., Cader, T., Finlayson, B.A.: Finite element model of magnetoconvection of a ferrofluid. J. Magn. Magn. Mater. 262(2), 269–279 (2003)
45.
Zurück zum Zitat Suslov, S.A., Bozhko, A.A., Sidorov, A.S., Putin, G.F.: Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study. Phys. Rev. E 86(1), 016301 (2012) Suslov, S.A., Bozhko, A.A., Sidorov, A.S., Putin, G.F.: Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study. Phys. Rev. E 86(1), 016301 (2012)
46.
Zurück zum Zitat Szabo, P.S.B., Früh, W.G.: The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 447, 116–123 (2018) Szabo, P.S.B., Früh, W.G.: The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 447, 116–123 (2018)
47.
Zurück zum Zitat Tangthieng, C., Finlayson, B.A., Maulbetsch, J., Cader, T.: Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. J. Magn. Magn. Mater. 201(1–3), 252–255 (1999) Tangthieng, C., Finlayson, B.A., Maulbetsch, J., Cader, T.: Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. J. Magn. Magn. Mater. 201(1–3), 252–255 (1999)
48.
Zurück zum Zitat Torres-Díaz, I., Rinaldi, C.: Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10(43), 8584–8602 (2014) Torres-Díaz, I., Rinaldi, C.: Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10(43), 8584–8602 (2014)
49.
Zurück zum Zitat Vatani, A., Woodfield, P.L., Nguyen, N.T., Abdollahi, A., Dao, D.V.: Numerical simulation of combined natural and thermomagnetic convection around a current carrying wire in ferrofluid. J. Magn. Magn. Mater. 489, 165383 (2019) Vatani, A., Woodfield, P.L., Nguyen, N.T., Abdollahi, A., Dao, D.V.: Numerical simulation of combined natural and thermomagnetic convection around a current carrying wire in ferrofluid. J. Magn. Magn. Mater. 489, 165383 (2019)
50.
Zurück zum Zitat Wang, J., Li, G., Zhu, H., Luo, J., Sundén, B.: Experimental investigation on convective heat transfer of ferrofluids inside a pipe under various magnet orientations. Int. J. Heat Mass Transf. 132, 407–419 (2019) Wang, J., Li, G., Zhu, H., Luo, J., Sundén, B.: Experimental investigation on convective heat transfer of ferrofluids inside a pipe under various magnet orientations. Int. J. Heat Mass Transf. 132, 407–419 (2019)
51.
Zurück zum Zitat Wrobel, W., Fornalik-Wajs, E., Szmyd, J.: Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. Int. J. Heat Fluid Flow 31(6), 1019–1031 (2010) Wrobel, W., Fornalik-Wajs, E., Szmyd, J.: Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. Int. J. Heat Fluid Flow 31(6), 1019–1031 (2010)
52.
Zurück zum Zitat Yamaguchi, H., Kobori, I., Uehata, Y.: Heat transfer in natural convection of magnetic fluids. J. Thermophys. Heat Transf. 13(4), 501–507 (1999a) Yamaguchi, H., Kobori, I., Uehata, Y.: Heat transfer in natural convection of magnetic fluids. J. Thermophys. Heat Transf. 13(4), 501–507 (1999a)
53.
Zurück zum Zitat Yamaguchi, H., Kobori, I., Uehata, Y., Shimada, K.: Natural convection of magnetic fluid in a rectangular box. J. Magn. Magn. Mater. 201(1–3), 264–267 (1999b) Yamaguchi, H., Kobori, I., Uehata, Y., Shimada, K.: Natural convection of magnetic fluid in a rectangular box. J. Magn. Magn. Mater. 201(1–3), 264–267 (1999b)
Metadaten
Titel
A numerical study on heat transfer of a ferrofluid flow in a square cavity under simultaneous gravitational and magnetic convection
verfasst von
Lucas H. P. Cunha
Ivan R. Siqueira
Arthur A. R. Campos
Adriano P. Rosa
Taygoara F. Oliveira
Publikationsdatum
07.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Theoretical and Computational Fluid Dynamics / Ausgabe 1-2/2020
Print ISSN: 0935-4964
Elektronische ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-020-00515-1

Weitere Artikel der Ausgabe 1-2/2020

Theoretical and Computational Fluid Dynamics 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.