Skip to main content
Erschienen in: Engineering with Computers 2/2021

07.11.2019 | Original Article

A numerical study on the fluid compressibility effects in strongly coupled fluid–solid interaction problems

verfasst von: Emad Tandis, Ali Ashrafizadeh

Erschienen in: Engineering with Computers | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interactions between an incompressible fluid passing through a flexible tube and the elastic wall is one of the strongly coupled fluid–solid interaction (FSI) problems frequently studied in the literature due to its research importance and wide range of applications. Although incompressible fluid is a prevalent model in many simulation studies, the assumption of incompressibility may not be appropriate in strongly coupled FSI problems. This paper narrowly aims to study the effect of the fluid compressibility on the wave propagation and fluid–solid interactions in a flexible tube. A partitioned FSI solver is used which employs a finite volume-based fluid solver. For the sake of comparison, both traditional incompressible (ico) and weakly compressible (wco) fluid models are used in an Arbitrary Lagrangian–Eulerian (ALE) formulation and a PISO-like algorithm is used to solve the unsteady flow equations on a collocated mesh. The solid part is modeled as a simple hyperelastic material obeying the St-Venant constitutive relation. Computational results show that not only use of the weakly compressible fluid model makes the FSI solver in this case more efficient, but also the incompressible fluid model may produce largely unrealistic computational results. Therefore, the use of the weakly compressible fluid model is suggested for strongly coupled FSI problems involving seemingly incompressible fluids such as water especially in cases where wave propagation in the solid plays an important role.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
PK2.
 
Literatur
1.
Zurück zum Zitat Gerbeau J-F, Vidrascu M (2003) A quasi-newton algorithm based on a reduced model for fluid–structure interaction, problems in blood flows. Math Model Numer Anal 37:631–647MathSciNetCrossRef Gerbeau J-F, Vidrascu M (2003) A quasi-newton algorithm based on a reduced model for fluid–structure interaction, problems in blood flows. Math Model Numer Anal 37:631–647MathSciNetCrossRef
2.
Zurück zum Zitat Causin P, Gerbeau J-F, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194:4506–4527MathSciNetCrossRef Causin P, Gerbeau J-F, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194:4506–4527MathSciNetCrossRef
3.
Zurück zum Zitat Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293MathSciNetCrossRef Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293MathSciNetCrossRef
4.
Zurück zum Zitat Badia S, Quaini A, Quarteroni A (2008) Modular vs non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput Methods Appl Mech Eng 197:4216–4232MathSciNetCrossRef Badia S, Quaini A, Quarteroni A (2008) Modular vs non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput Methods Appl Mech Eng 197:4216–4232MathSciNetCrossRef
5.
Zurück zum Zitat He T (2015) Partitioned coupling strategies for fluid–structure interaction with large displacement: explicit, implicit and semi-implicit schemes. Wind Struct 20(3):423–448CrossRef He T (2015) Partitioned coupling strategies for fluid–structure interaction with large displacement: explicit, implicit and semi-implicit schemes. Wind Struct 20(3):423–448CrossRef
6.
Zurück zum Zitat Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190:3039–3067CrossRef Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190:3039–3067CrossRef
7.
Zurück zum Zitat De Santiago E, Law KH (1999) A robust distributed adaptive finite element program for coupled fluid-structure problems. Eng Comput 15:137–154CrossRef De Santiago E, Law KH (1999) A robust distributed adaptive finite element program for coupled fluid-structure problems. Eng Comput 15:137–154CrossRef
8.
Zurück zum Zitat Parker G, Guilkey J, Harman T (2006) A component-based parallel infrastructure for the simulation of fluid–structure interaction. Eng Comput 22:277–292CrossRef Parker G, Guilkey J, Harman T (2006) A component-based parallel infrastructure for the simulation of fluid–structure interaction. Eng Comput 22:277–292CrossRef
9.
Zurück zum Zitat Deiterding R, Radovitzky R, Mauch SP, Noels L, Cummings JC, Meiron DI (2006) A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Eng Comput 22:325–347CrossRef Deiterding R, Radovitzky R, Mauch SP, Noels L, Cummings JC, Meiron DI (2006) A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Eng Comput 22:325–347CrossRef
10.
Zurück zum Zitat Degroote J, Swillens A, Bruggeman P, Haelterman R, Segers P, Vierendeels J (2010) Simulation of fluid–structure interaction with the interface artificial compressibility method. Int J Numer Methods Biomed Eng 26:276–289MathSciNetCrossRef Degroote J, Swillens A, Bruggeman P, Haelterman R, Segers P, Vierendeels J (2010) Simulation of fluid–structure interaction with the interface artificial compressibility method. Int J Numer Methods Biomed Eng 26:276–289MathSciNetCrossRef
11.
Zurück zum Zitat Raback P, Jarvinen E, Ruokolainen J (2008) Computing the artificial compressibility field for partitioned fluid–structure interaction simulations. Eighth World Congress on Computational Mechanics, 5th European Congress on computational methods in applied sciences and engineering, Venice, Italy Raback P, Jarvinen E, Ruokolainen J (2008) Computing the artificial compressibility field for partitioned fluid–structure interaction simulations. Eighth World Congress on Computational Mechanics, 5th European Congress on computational methods in applied sciences and engineering, Venice, Italy
12.
Zurück zum Zitat Bogaers AEJ, Kok S, Reddy BD, Franz T (2015) Extending the robustness and efficiency of artificial compressibility for partitioned fluid–structure interactions. Comput Methods Appl Mech Eng 283:1278–1295MathSciNetCrossRef Bogaers AEJ, Kok S, Reddy BD, Franz T (2015) Extending the robustness and efficiency of artificial compressibility for partitioned fluid–structure interactions. Comput Methods Appl Mech Eng 283:1278–1295MathSciNetCrossRef
13.
Zurück zum Zitat He T, Wang T, Zhang H (2018) The use of artificial compressibility to improve partitioned semi-implicit fsi coupling within the classical chorin-témam projection framework. Comput Fluids 166:64–77MathSciNetCrossRef He T, Wang T, Zhang H (2018) The use of artificial compressibility to improve partitioned semi-implicit fsi coupling within the classical chorin-témam projection framework. Comput Fluids 166:64–77MathSciNetCrossRef
14.
Zurück zum Zitat Marrone S, Colagrossi A, Di Mascio A, Le Touzé D (2015) Prediction of energy losses in water impacts using incompressible and weakly compressible models. J Fluids Struct 54:802–822CrossRef Marrone S, Colagrossi A, Di Mascio A, Le Touzé D (2015) Prediction of energy losses in water impacts using incompressible and weakly compressible models. J Fluids Struct 54:802–822CrossRef
15.
Zurück zum Zitat Andersson H, Nordin P, Borrvall T, Simonsson K, Hilding D, Schill M, Krus P, Leidermark D (2017) A co-simulation method for system-level simulation of fluid-structure couplings in hydraulic percussion units. Eng Comput 33:317–333CrossRef Andersson H, Nordin P, Borrvall T, Simonsson K, Hilding D, Schill M, Krus P, Leidermark D (2017) A co-simulation method for system-level simulation of fluid-structure couplings in hydraulic percussion units. Eng Comput 33:317–333CrossRef
16.
Zurück zum Zitat Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2:12–26MathSciNetCrossRef Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2:12–26MathSciNetCrossRef
17.
Zurück zum Zitat Pierre B, Oger G, Guilcher P, Touze DL (2017) A weakly-compressible cartesian grid approach for hydrodynamic flows. Comput Phys Commun 220:31–43MathSciNetCrossRef Pierre B, Oger G, Guilcher P, Touze DL (2017) A weakly-compressible cartesian grid approach for hydrodynamic flows. Comput Phys Commun 220:31–43MathSciNetCrossRef
18.
Zurück zum Zitat Seo JH, Moon YJ (2006) Linearized perturbed compressible equations for low mach number aeroacoustics. J Comput Phys 218:702–719MathSciNetCrossRef Seo JH, Moon YJ (2006) Linearized perturbed compressible equations for low mach number aeroacoustics. J Comput Phys 218:702–719MathSciNetCrossRef
19.
Zurück zum Zitat Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253CrossRef Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253CrossRef
20.
Zurück zum Zitat Hughes THR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flow. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRef Hughes THR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flow. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRef
21.
Zurück zum Zitat Barlowa AJ, Maire PH, Rider WJ, Rieben RN, Shashkov MJ (2016) Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows. J Comput Phys 322:603–665MathSciNetCrossRef Barlowa AJ, Maire PH, Rider WJ, Rieben RN, Shashkov MJ (2016) Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows. J Comput Phys 322:603–665MathSciNetCrossRef
22.
Zurück zum Zitat Greenshields CJ, Weller HG, Ivankovic A (1999) The finite volume method for coupled fluid fow and stress analysis. Comput Model Simul Eng 4:213–218 Greenshields CJ, Weller HG, Ivankovic A (1999) The finite volume method for coupled fluid fow and stress analysis. Comput Model Simul Eng 4:213–218
23.
Zurück zum Zitat Kochupillai J, Ganesan N, Padmanabhan C (2005) A new finite element formulation based on the velocity of flow for water hammer problems. Int J Press Vessels Pip 82:1–14CrossRef Kochupillai J, Ganesan N, Padmanabhan C (2005) A new finite element formulation based on the velocity of flow for water hammer problems. Int J Press Vessels Pip 82:1–14CrossRef
24.
Zurück zum Zitat Daude F, Tijsseling AS, Galon P (2018) Numerical investigations of water-hammer with column- separation induced by vaporous cavitation using a one-dimensional finite-volume approach. J Fluids Struct 83:91–118CrossRef Daude F, Tijsseling AS, Galon P (2018) Numerical investigations of water-hammer with column- separation induced by vaporous cavitation using a one-dimensional finite-volume approach. J Fluids Struct 83:91–118CrossRef
25.
Zurück zum Zitat Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191(6–7):561–582MathSciNetCrossRef Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191(6–7):561–582MathSciNetCrossRef
26.
Zurück zum Zitat Gee MW, Küttler U, Wall WA (2011) Truly monolithic algebraic multigrid for fluid–structure interaction. Int J Numer Meth Eng 85:987–1016MathSciNetCrossRef Gee MW, Küttler U, Wall WA (2011) Truly monolithic algebraic multigrid for fluid–structure interaction. Int J Numer Meth Eng 85:987–1016MathSciNetCrossRef
27.
Zurück zum Zitat Eken A, Sahin M (2016) A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems. Int J Numer Meth Fluids 80:687–714MathSciNetCrossRef Eken A, Sahin M (2016) A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems. Int J Numer Meth Fluids 80:687–714MathSciNetCrossRef
28.
Zurück zum Zitat Lozovskiya A, Olshanskii MA, Vassilevski YV (2019) Analysis and assessment of a monolithic FSI finite element method. Comput Fluids 179:277–288MathSciNetCrossRef Lozovskiya A, Olshanskii MA, Vassilevski YV (2019) Analysis and assessment of a monolithic FSI finite element method. Comput Fluids 179:277–288MathSciNetCrossRef
29.
Zurück zum Zitat Soloukhin RI (1966) Shock waves and detonations in gases. Mono Books Soloukhin RI (1966) Shock waves and detonations in gases. Mono Books
30.
Zurück zum Zitat Zhang G, Setoguchi T, Kim HD (2015) Numerical simulation of flow characteristics in micro shock tubes. J Therm Sci 24(3):246–253CrossRef Zhang G, Setoguchi T, Kim HD (2015) Numerical simulation of flow characteristics in micro shock tubes. J Therm Sci 24(3):246–253CrossRef
31.
32.
Zurück zum Zitat Issa RI (1985) Solution of implicitly discretized fluid flow equations by operator-splitting. J Comput Phys 62:40–65CrossRef Issa RI (1985) Solution of implicitly discretized fluid flow equations by operator-splitting. J Comput Phys 62:40–65CrossRef
33.
Zurück zum Zitat Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer Heat Transf 10:209–228CrossRef Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer Heat Transf 10:209–228CrossRef
34.
Zurück zum Zitat Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid–structure interaction in flexible tubes. Int J Numer Meth Eng 64:1575–1593MathSciNetCrossRef Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid–structure interaction in flexible tubes. Int J Numer Meth Eng 64:1575–1593MathSciNetCrossRef
35.
Zurück zum Zitat Demirdzic I, Peric M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Meth Fluids 8:1037–1050MathSciNetCrossRef Demirdzic I, Peric M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Meth Fluids 8:1037–1050MathSciNetCrossRef
36.
Zurück zum Zitat Maneeratana K (2000) Development of finite volume method for non-linear structure applications. PhD Thesis, Department of Mechanical Engineering Imperial College of Science, Technology and Medicine, London Maneeratana K (2000) Development of finite volume method for non-linear structure applications. PhD Thesis, Department of Mechanical Engineering Imperial College of Science, Technology and Medicine, London
37.
Zurück zum Zitat Jasak H, Tukovic Z (2007) Upadted lagrangian finite volume solver for large deformation dynamic response of elastic. Trans FAMENA 31(1):55–70 Jasak H, Tukovic Z (2007) Upadted lagrangian finite volume solver for large deformation dynamic response of elastic. Trans FAMENA 31(1):55–70
38.
Zurück zum Zitat Donea J, Huerta A, Ponthot J-Ph, Rodriguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. Encyclopedia of computational mechanics; Chapter 14 Donea J, Huerta A, Ponthot J-Ph, Rodriguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. Encyclopedia of computational mechanics; Chapter 14
39.
Zurück zum Zitat Ryzhakov P, Marti J, Idelsohn S, Oñate E (2017) Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput Methods Appl Mech Eng 315:1080–1097MathSciNetCrossRef Ryzhakov P, Marti J, Idelsohn S, Oñate E (2017) Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput Methods Appl Mech Eng 315:1080–1097MathSciNetCrossRef
40.
Zurück zum Zitat Mok D, Wall WA (2001) Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In: Wall WA, Bletzinger KU, Schweitzerhof K (eds) Trends in computational structural mechanics. CIMNE, Barcelona Mok D, Wall WA (2001) Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In: Wall WA, Bletzinger KU, Schweitzerhof K (eds) Trends in computational structural mechanics. CIMNE, Barcelona
41.
Zurück zum Zitat Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72CrossRef Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43:61–72CrossRef
42.
Zurück zum Zitat Pielhop K, Klaas M, Schröder W (2015) Experimental analysis of the fluid–structure interaction in finite-length straight elastic vessels. Eur J Mech B/Fluids 50:71–88CrossRef Pielhop K, Klaas M, Schröder W (2015) Experimental analysis of the fluid–structure interaction in finite-length straight elastic vessels. Eur J Mech B/Fluids 50:71–88CrossRef
44.
Zurück zum Zitat Tijsseling AS (2007) Water hammer with fluid–structure interaction in thick-walled pipes. Comput Struct 85:844–851CrossRef Tijsseling AS (2007) Water hammer with fluid–structure interaction in thick-walled pipes. Comput Struct 85:844–851CrossRef
Metadaten
Titel
A numerical study on the fluid compressibility effects in strongly coupled fluid–solid interaction problems
verfasst von
Emad Tandis
Ali Ashrafizadeh
Publikationsdatum
07.11.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00880-4

Weitere Artikel der Ausgabe 2/2021

Engineering with Computers 2/2021 Zur Ausgabe

Neuer Inhalt