Skip to main content
Erschienen in: Computational Mechanics 5/2018

12.01.2018 | Original Paper

A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing

verfasst von: Yanping Lian, Stephen Lin, Wentao Yan, Wing Kam Liu, Gregory J. Wagner

Erschienen in: Computational Mechanics | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371CrossRef Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371CrossRef
2.
Zurück zum Zitat Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the \(\beta \)-grain structure and texture in additive manufacture of Ti–6Al–4V by selective electron beam melting. Mater Charact 84:153–168CrossRef Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the \(\beta \)-grain structure and texture in additive manufacture of Ti–6Al–4V by selective electron beam melting. Mater Charact 84:153–168CrossRef
3.
Zurück zum Zitat Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A 41(13):3422–3434CrossRef Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A 41(13):3422–3434CrossRef
4.
Zurück zum Zitat Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Ann Rev Mater Res 32(1):163–194CrossRef Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Ann Rev Mater Res 32(1):163–194CrossRef
5.
Zurück zum Zitat Carozzani T, Gandin C-A, Digonnet H, Bellet M, Zaidat K, Fautrelle Y (2013) Direct simulation of a solidification benchmark experiment. Metall Mater Trans A Phys Metall Mater Sci 44(2):873–887CrossRef Carozzani T, Gandin C-A, Digonnet H, Bellet M, Zaidat K, Fautrelle Y (2013) Direct simulation of a solidification benchmark experiment. Metall Mater Trans A Phys Metall Mater Sci 44(2):873–887CrossRef
6.
Zurück zum Zitat Dantzig JA, Rappaz M (2016) Solidification. EPFL Press, LausanneMATH Dantzig JA, Rappaz M (2016) Solidification. EPFL Press, LausanneMATH
7.
Zurück zum Zitat Dezfoli ARA, Hwang W-S, Huang W-C, Tsai T-W (2017) Determination and controlling of grain structure of metals after laser incidence: theoretical approach. Sci Rep 7(41527):1–11 Dezfoli ARA, Hwang W-S, Huang W-C, Tsai T-W (2017) Determination and controlling of grain structure of metals after laser incidence: theoretical approach. Sci Rep 7(41527):1–11
8.
Zurück zum Zitat Ferreira AF, da Silva AJ, de Castro JA (2006) Simulation of the solidification of pure nickel via the phase-field method. Mater Res 9(4):349–356CrossRef Ferreira AF, da Silva AJ, de Castro JA (2006) Simulation of the solidification of pure nickel via the phase-field method. Mater Res 9(4):349–356CrossRef
9.
Zurück zum Zitat Gandin C-A, Rappaz M (1994) A coupled finite element cellular automaton model for the prediction of dentritic grain structures in solidification processes. Acta Metall Mater 42(7):2233–2246CrossRef Gandin C-A, Rappaz M (1994) A coupled finite element cellular automaton model for the prediction of dentritic grain structures in solidification processes. Acta Metall Mater 42(7):2233–2246CrossRef
10.
Zurück zum Zitat Gandin C-A, Desbiolles J-L, Rappaz M, Thevoz P (1999) A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metall Mater Trans A 30(12):3153–3165CrossRef Gandin C-A, Desbiolles J-L, Rappaz M, Thevoz P (1999) A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metall Mater Trans A 30(12):3153–3165CrossRef
11.
Zurück zum Zitat Gandin C-A, Rappaz M (1997) A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater 45(5):2187–2195CrossRef Gandin C-A, Rappaz M (1997) A 3D cellular automaton algorithm for the prediction of dendritic grain growth. Acta Mater 45(5):2187–2195CrossRef
12.
Zurück zum Zitat Kim Y-T, Goldenfeld N, Dantzig J (2000) Computation of dendritic microstructures using a level set method. Phys Rev E 62(2):2471–2474CrossRef Kim Y-T, Goldenfeld N, Dantzig J (2000) Computation of dendritic microstructures using a level set method. Phys Rev E 62(2):2471–2474CrossRef
13.
Zurück zum Zitat Kurz W, Giovanola B, Trivedi R (1986) Theory of microstructural development during rapid solidification. Acta Metall 34(5):823–830CrossRef Kurz W, Giovanola B, Trivedi R (1986) Theory of microstructural development during rapid solidification. Acta Metall 34(5):823–830CrossRef
14.
Zurück zum Zitat Lipton J, Glicksman ME, Kurz W (1984) Dendritic growth into undercooled alloy melts. Mater Sci Eng 65:57–63CrossRef Lipton J, Glicksman ME, Kurz W (1984) Dendritic growth into undercooled alloy melts. Mater Sci Eng 65:57–63CrossRef
15.
Zurück zum Zitat Liu DR, Reinhart G, Mangelinck-Noel N, Gandin C-A, Nguyen-Thi H, Billia B (2014) Coupled cellular automaton (CA)–finite element (FE) modeling of directional solidification of Al-3.5 wt% Ni alloy: a comparison with X-ray synchrotron observations. ISIJ Int 54(2):392–400CrossRef Liu DR, Reinhart G, Mangelinck-Noel N, Gandin C-A, Nguyen-Thi H, Billia B (2014) Coupled cellular automaton (CA)–finite element (FE) modeling of directional solidification of Al-3.5 wt% Ni alloy: a comparison with X-ray synchrotron observations. ISIJ Int 54(2):392–400CrossRef
17.
Zurück zum Zitat Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490CrossRef Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490CrossRef
18.
Zurück zum Zitat Rappaz M, Gandin C-A (1993) Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater 41(2):345–360CrossRef Rappaz M, Gandin C-A (1993) Probabilistic modelling of microstructure formation in solidification processes. Acta Metall Mater 41(2):345–360CrossRef
19.
Zurück zum Zitat Rodgers TM, Madison JD, Tikare V, Maguire MC (2016) Predicting mesoscale microstructural evolution in electron beam welding. JOM 68(5):1419–1426CrossRef Rodgers TM, Madison JD, Tikare V, Maguire MC (2016) Predicting mesoscale microstructural evolution in electron beam welding. JOM 68(5):1419–1426CrossRef
20.
Zurück zum Zitat Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89CrossRef Rodgers TM, Madison JD, Tikare V (2017) Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput Mater Sci 135:78–89CrossRef
21.
Zurück zum Zitat Scott TJ, Beaulieu TJ, Rothrock GD, O’Connor AC (2016) Economic analysis of technology infrastructure needs for advanced manufacturing: additive manufacturing. In: NIST GCR-16-006, NIST, Gaithersburg, MD Scott TJ, Beaulieu TJ, Rothrock GD, O’Connor AC (2016) Economic analysis of technology infrastructure needs for advanced manufacturing: additive manufacturing. In: NIST GCR-16-006, NIST, Gaithersburg, MD
22.
Zurück zum Zitat Tan L, Zabaras N (2007) A level set simulation of dendritic solidification of multi-component alloys. J Comput Phys 221(1):9–40MathSciNetCrossRefMATH Tan L, Zabaras N (2007) A level set simulation of dendritic solidification of multi-component alloys. J Comput Phys 221(1):9–40MathSciNetCrossRefMATH
23.
Zurück zum Zitat Wheeler AA, McFadden GB, Boettinger WJ (1996) Phase-field model for solidification of a eutectic alloy. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 452, no 1946. The Royal Society, pp 495–525 Wheeler AA, McFadden GB, Boettinger WJ (1996) Phase-field model for solidification of a eutectic alloy. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 452, no 1946. The Royal Society, pp 495–525
24.
Zurück zum Zitat Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333CrossRef Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333CrossRef
25.
Zurück zum Zitat Yin H, Felicelli SD (2010) Dendrite growth simulation during solidification in the LENS process. Acta Mater 58(4):1455–1465CrossRef Yin H, Felicelli SD (2010) Dendrite growth simulation during solidification in the LENS process. Acta Mater 58(4):1455–1465CrossRef
26.
Zurück zum Zitat Zhang J, Liou F, Seufzer W, Taminger K (2016) A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti–6Al–4V during direct metal deposition (DMD). Addit Manuf 11:32–39CrossRef Zhang J, Liou F, Seufzer W, Taminger K (2016) A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti–6Al–4V during direct metal deposition (DMD). Addit Manuf 11:32–39CrossRef
27.
Zurück zum Zitat Zhao C, Fezzaa K, Cunningham RW, Wen H, Carlo FD, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7(3601):1–11 Zhao C, Fezzaa K, Cunningham RW, Wen H, Carlo FD, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7(3601):1–11
28.
Zurück zum Zitat Zinoviev A, Zinovieva O, Ploshikhin V, Romanova V, Balokhonov R (2016) Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Mater Des 106:321–329CrossRef Zinoviev A, Zinovieva O, Ploshikhin V, Romanova V, Balokhonov R (2016) Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Mater Des 106:321–329CrossRef
Metadaten
Titel
A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing
verfasst von
Yanping Lian
Stephen Lin
Wentao Yan
Wing Kam Liu
Gregory J. Wagner
Publikationsdatum
12.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1535-8

Weitere Artikel der Ausgabe 5/2018

Computational Mechanics 5/2018 Zur Ausgabe

Neuer Inhalt