Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2019

12.02.2018 | Original Research

A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay

verfasst von: Devendra Kumar, Parvin Kumari

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical scheme for a class of singularly perturbed parabolic partial differential equation with the time delay on a rectangular domain in the xt plane is constructed. The presence of the perturbation parameter in the second-order space derivative gives rise to parabolic boundary layer(s) on one (or both) of the lateral side(s) of the rectangle. Thus the classical numerical methods on the uniform mesh are inadequate and fail to give good accuracy and results in large oscillations as the perturbation parameter approaches zero. To overcome this drawback a numerical method comprising the Crank–Nicolson finite difference method consisting of a midpoint upwind finite difference scheme on a fitted piecewise-uniform mesh of \(N\times M\) elements condensing in the boundary layer region is constructed. A priori explicit bounds on the solution of the problem and its derivatives which are useful for the error analysis of the numerical method are established. To establish the parameter-uniform convergence of the proposed method an extensive amount of analysis is carried out. It is shown that the proposed difference scheme is second-order accurate in the temporal direction and the first-order (up to a logarithmic factor) accurate in the spatial direction. To validate the theoretical results, the method is applied to two test problems. The performance of the method is demonstrated by calculating the maximum absolute errors and experimental orders of convergence. Since the exact solutions of the test problems are not known, the maximum absolute errors are obtained by using double mesh principle. The numerical results show that the proposed method is simply applicable, accurate, efficient and robust.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ansari, A.R., Bakr, S.A., Shishkin, G.I.: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205, 552–566 (2007)MathSciNetCrossRefMATH Ansari, A.R., Bakr, S.A., Shishkin, G.I.: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205, 552–566 (2007)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Asl, F.M., Ulsoy, A.G.: Analysis of a system of linear delay differential equations. J. Dyn. Syst. Meas. Control 125, 215–223 (2003)CrossRef Asl, F.M., Ulsoy, A.G.: Analysis of a system of linear delay differential equations. J. Dyn. Syst. Meas. Control 125, 215–223 (2003)CrossRef
4.
Zurück zum Zitat Aziz, I., Amin, R.: Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet. Appl. Math. Model. 40, 10286–10299 (2016)MathSciNetCrossRef Aziz, I., Amin, R.: Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet. Appl. Math. Model. 40, 10286–10299 (2016)MathSciNetCrossRef
5.
Zurück zum Zitat Baranowski, J.: Legendre polynomial approximations of time delay systems. In: Proceeding of 12th International PhD Workshop, vol. 1, pp. 15–20 (2010) Baranowski, J.: Legendre polynomial approximations of time delay systems. In: Proceeding of 12th International PhD Workshop, vol. 1, pp. 15–20 (2010)
6.
Zurück zum Zitat Bashier, E.B.M., Patidar, K.C.: A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. Appl. Math. Comput. 217, 4728–4739 (2011)MathSciNetMATH Bashier, E.B.M., Patidar, K.C.: A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. Appl. Math. Comput. 217, 4728–4739 (2011)MathSciNetMATH
7.
Zurück zum Zitat Campbell, S.A., Edwards, R., Van Den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65, 316–335 (2004)MathSciNetCrossRefMATH Campbell, S.A., Edwards, R., Van Den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65, 316–335 (2004)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)MathSciNetCrossRefMATH Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cooke, K.L., Kuang, Y., Li, B.: Analysis of an antiviral immune response model with time delays. Can. Appl. Math. Q. 6, 321–354 (1998)MATH Cooke, K.L., Kuang, Y., Li, B.: Analysis of an antiviral immune response model with time delays. Can. Appl. Math. Q. 6, 321–354 (1998)MATH
10.
Zurück zum Zitat Cooke, K.L., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–354 (1999)MathSciNetCrossRefMATH Cooke, K.L., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–354 (1999)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Das, A., Natesan, S.: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh. Appl. Math. Comput. 271, 168–186 (2015)MathSciNetMATH Das, A., Natesan, S.: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh. Appl. Math. Comput. 271, 168–186 (2015)MathSciNetMATH
12.
Zurück zum Zitat Epstein, I.R.: Delay effects and differential delay equations in chemical kinetics. Int. Rev. Phys. Chem. 11, 135–160 (1992)CrossRef Epstein, I.R.: Delay effects and differential delay equations in chemical kinetics. Int. Rev. Phys. Chem. 11, 135–160 (1992)CrossRef
13.
Zurück zum Zitat Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall, London (2000)CrossRefMATH Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall, London (2000)CrossRefMATH
14.
Zurück zum Zitat Gowrisankar, S., Natesan, S.: \(\epsilon \)-Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations. Int. J. Comput. Math. 94, 902–921 (2017)MathSciNetCrossRefMATH Gowrisankar, S., Natesan, S.: \(\epsilon \)-Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations. Int. J. Comput. Math. 94, 902–921 (2017)MathSciNetCrossRefMATH
15.
16.
Zurück zum Zitat Van Harten, A., Schumacher, J.M.: On a Class of Partial Functional Differential Equations Arising in Feedback Control Theory. North Holland, Amsterdam (1978)MATH Van Harten, A., Schumacher, J.M.: On a Class of Partial Functional Differential Equations Arising in Feedback Control Theory. North Holland, Amsterdam (1978)MATH
17.
Zurück zum Zitat Hemker, P.W., Shishkin, G.I., Shishkina, L.P.: The use of defect correction for the solution of parabolic singular perturbation problems. Z. Angew. Math. Mech. 76, 59–74 (1997)MathSciNetCrossRefMATH Hemker, P.W., Shishkin, G.I., Shishkina, L.P.: The use of defect correction for the solution of parabolic singular perturbation problems. Z. Angew. Math. Mech. 76, 59–74 (1997)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Hemker, P.W., Shishkin, G.I., Shishkina, L.P.: \(\epsilon \)-Uniform schemes with high-order time-accuracy for parabolic singular perturbation problems. IMA J. Numer. Anal. 20, 99–121 (2000)MathSciNetCrossRefMATH Hemker, P.W., Shishkin, G.I., Shishkina, L.P.: \(\epsilon \)-Uniform schemes with high-order time-accuracy for parabolic singular perturbation problems. IMA J. Numer. Anal. 20, 99–121 (2000)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Kadalbajoo, M.K., Awasthi, A.: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension. Appl. Math. Comput. 183, 42–60 (2006)MathSciNetMATH Kadalbajoo, M.K., Awasthi, A.: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension. Appl. Math. Comput. 183, 42–60 (2006)MathSciNetMATH
20.
Zurück zum Zitat Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential-difference equations with small shift. Appl. Math. Model. 34, 2584–2596 (2010)MathSciNetCrossRefMATH Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential-difference equations with small shift. Appl. Math. Model. 34, 2584–2596 (2010)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Kaushik, A., Sharma, M.D.: Numerical analysis of a mathematical model for propagation of an electrical pulse in a neuron. Numer. Methods Partial Differ. Equ. 27, 1–18 (2008)MathSciNetMATH Kaushik, A., Sharma, M.D.: Numerical analysis of a mathematical model for propagation of an electrical pulse in a neuron. Numer. Methods Partial Differ. Equ. 27, 1–18 (2008)MathSciNetMATH
22.
Zurück zum Zitat Kellogg, R.B., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning point. Math. Comp. 32, 1025–1039 (1978)MathSciNetCrossRefMATH Kellogg, R.B., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning point. Math. Comp. 32, 1025–1039 (1978)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993)MATH Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993)MATH
24.
Zurück zum Zitat Kumar, D., Kadalbajoo, M.K.: A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations. Appl. Math. Model. 35, 2805–2819 (2011)MathSciNetCrossRefMATH Kumar, D., Kadalbajoo, M.K.: A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations. Appl. Math. Model. 35, 2805–2819 (2011)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Kumar, D., Kadalbajoo, M.K.: A parameter uniform method for singularly perturbed differential-difference equations with small shifts. J. Numer. Math. 21, 1–22 (2013)MathSciNetCrossRefMATH Kumar, D., Kadalbajoo, M.K.: A parameter uniform method for singularly perturbed differential-difference equations with small shifts. J. Numer. Math. 21, 1–22 (2013)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Kuramoto, Y., Yamada, T.: Turbulent state in chemical reactions. Prog. Theor. Phys. 56, 679–681 (1976)CrossRef Kuramoto, Y., Yamada, T.: Turbulent state in chemical reactions. Prog. Theor. Phys. 56, 679–681 (1976)CrossRef
27.
Zurück zum Zitat Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)CrossRef Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)CrossRef
28.
Zurück zum Zitat McCartin, B.J.: Discretization of the semiconductor device equations. In: Miller, J.J.H. (ed.) New Problems and New Solutions for Device and Process Modelling. Boole Press, Dublin (1985) McCartin, B.J.: Discretization of the semiconductor device equations. In: Miller, J.J.H. (ed.) New Problems and New Solutions for Device and Process Modelling. Boole Press, Dublin (1985)
29.
Zurück zum Zitat Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)CrossRefMATH Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)CrossRefMATH
30.
Zurück zum Zitat Murray, J.D.: Mathematical Biology. I. An Introduction, 3rd edn. Springer, New York (2002)MATH Murray, J.D.: Mathematical Biology. I. An Introduction, 3rd edn. Springer, New York (2002)MATH
31.
Zurück zum Zitat Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)MathSciNetCrossRefMATH Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Nelson, P.W., Perelson, A.S.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)MathSciNetCrossRefMATH Nelson, P.W., Perelson, A.S.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems. Springer, New York (1996)CrossRefMATH Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems. Springer, New York (1996)CrossRefMATH
34.
Zurück zum Zitat Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer. Wiley, New York (1995) Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer. Wiley, New York (1995)
35.
Zurück zum Zitat Shishkin, G.I.: Approximation of solutions of singularly perturbed boundary value problems with a parabolic boundary layer. USSR Comput. Math. Math. Phys. 29, 1–10 (1989)MathSciNetCrossRefMATH Shishkin, G.I.: Approximation of solutions of singularly perturbed boundary value problems with a parabolic boundary layer. USSR Comput. Math. Math. Phys. 29, 1–10 (1989)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Smolen, P., Baxter, D.A., Byrne, J.H.: A reduced model clarifies the role of feedback loops and time delays in the drosophila circadian oscillator. Biophys. J. 83, 2349–2359 (2002)CrossRef Smolen, P., Baxter, D.A., Byrne, J.H.: A reduced model clarifies the role of feedback loops and time delays in the drosophila circadian oscillator. Biophys. J. 83, 2349–2359 (2002)CrossRef
37.
Zurück zum Zitat Symko, R.M., Glass, L.: Spatial switching in chemical reactions with heterogeneous catalysts. J. Chem. Phys. 60, 835–841 (1974)CrossRef Symko, R.M., Glass, L.: Spatial switching in chemical reactions with heterogeneous catalysts. J. Chem. Phys. 60, 835–841 (1974)CrossRef
38.
Zurück zum Zitat Takahashi, Y., Rabins, M.J., Auslander, D.M.: Control and Dynamic Systems. Addison Wesley, Boston (1970)MATH Takahashi, Y., Rabins, M.J., Auslander, D.M.: Control and Dynamic Systems. Addison Wesley, Boston (1970)MATH
39.
Zurück zum Zitat Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Nauka, Moscow (1972)MATH Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Nauka, Moscow (1972)MATH
40.
41.
43.
Zurück zum Zitat Wang, X.T.: Numerical solution of delay systems containing inverse time by hybrid functions. Appl. Math. Comput. 173, 535–546 (2006)MathSciNetMATH Wang, X.T.: Numerical solution of delay systems containing inverse time by hybrid functions. Appl. Math. Comput. 173, 535–546 (2006)MathSciNetMATH
44.
Zurück zum Zitat Wang, Y., Tian, D., Li, Z.: Numerical method for singularly perturbed delay parabolic partial differential equations. Thermal Science 21, 1595–1599 (2017)CrossRef Wang, Y., Tian, D., Li, Z.: Numerical method for singularly perturbed delay parabolic partial differential equations. Thermal Science 21, 1595–1599 (2017)CrossRef
45.
Zurück zum Zitat Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)CrossRefMATH Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)CrossRefMATH
46.
Zurück zum Zitat Zhao, T.: Global periodic-solutions for a differential delay system modeling a microbial population in the chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)MathSciNetCrossRefMATH Zhao, T.: Global periodic-solutions for a differential delay system modeling a microbial population in the chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)MathSciNetCrossRefMATH
Metadaten
Titel
A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay
verfasst von
Devendra Kumar
Parvin Kumari
Publikationsdatum
12.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2019
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-018-1174-z

Weitere Artikel der Ausgabe 1-2/2019

Journal of Applied Mathematics and Computing 1-2/2019 Zur Ausgabe