Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Applicable Algebra in Engineering, Communication and Computing 1/2022

17.04.2020 | Original Paper

A partial characterization of Hilbert quasi-polynomials in the non-standard case

verfasst von: Massimo Caboara, Carla Mascia

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this paper, we present some work towards a complete characterization of Hilbert quasi-polynomials of graded polynomial rings. In this setting, a Hilbert quasi-polynomial splits in a polynomial F and a lower degree quasi-polynomial G. We completely describe the periodic structure of G. Moreover, we give an explicit formula for the \((n-1)\)th and \((n-2)\)th coefficient of F, where n denotes the degree of F. Finally, we provide an algorithm to compute the Hilbert quasi-polynomial of any graded polynomial ring.
Literatur
1.
Zurück zum Zitat Bavula, V.V.: Identification of the Hilbert function and Poincarè series, and the dimension of modules over filtered rings, Russian Academy of Sciences. Izv. Math. 44(2), 225 (1995) MathSciNetCrossRef Bavula, V.V.: Identification of the Hilbert function and Poincarè series, and the dimension of modules over filtered rings, Russian Academy of Sciences. Izv. Math. 44(2), 225 (1995) MathSciNetCrossRef
2.
Zurück zum Zitat Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1998) CrossRef Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1998) CrossRef
3.
Zurück zum Zitat Bruns, W., Ichim, B.: On the Coefficients of Hilbert Quasipolynomials. Proc. Am. Math. Soc. 135(5), 1305–1308 (2005) MathSciNetCrossRef Bruns, W., Ichim, B.: On the Coefficients of Hilbert Quasipolynomials. Proc. Am. Math. Soc. 135(5), 1305–1308 (2005) MathSciNetCrossRef
5.
Zurück zum Zitat Caboara, M., Mascia, C.: On the Hilbert quasi-polynomials for non-standard graded rings. ACM Commun. Comput. Algebra 49, 101–104 (2015) MathSciNetCrossRef Caboara, M., Mascia, C.: On the Hilbert quasi-polynomials for non-standard graded rings. ACM Commun. Comput. Algebra 49, 101–104 (2015) MathSciNetCrossRef
6.
Zurück zum Zitat Dalzotto, G., Sbarra, E.: Computations in weighted polynomial rings. Analele Stiintifice ale Universitatii Ovidius Constanta 14(2), 31–44 (2006) MathSciNetMATH Dalzotto, G., Sbarra, E.: Computations in weighted polynomial rings. Analele Stiintifice ale Universitatii Ovidius Constanta 14(2), 31–44 (2006) MathSciNetMATH
7.
Zurück zum Zitat Dalzotto, G., Sbarra, E.: On non-standard graded algebras. Toyama Math. J. 31, 33–57 (2008) MathSciNetMATH Dalzotto, G., Sbarra, E.: On non-standard graded algebras. Toyama Math. J. 31, 33–57 (2008) MathSciNetMATH
8.
Zurück zum Zitat Dichi, H., Sangaré, D.: Hilbert functions, Hilbert-Samuel quasi-polynomials with respect to \(f\)-good filtrations, multiplicities. J. Pure Appl. Algebr. 138(3), 205–213 (1999) MathSciNetCrossRef Dichi, H., Sangaré, D.: Hilbert functions, Hilbert-Samuel quasi-polynomials with respect to \(f\)-good filtrations, multiplicities. J. Pure Appl. Algebr. 138(3), 205–213 (1999) MathSciNetCrossRef
9.
Zurück zum Zitat Herzog, J., Puthenpurakal, T.J., Verma, J.K.: Hilbert polynomials and powers of ideals. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 145, No. 3, pp. 623–642. Cambridge University Press (2008) Herzog, J., Puthenpurakal, T.J., Verma, J.K.: Hilbert polynomials and powers of ideals. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 145, No. 3, pp. 623–642. Cambridge University Press (2008)
10.
Zurück zum Zitat Hoang, N.D., Trung, N.V.: Hilbert polynomials of non-standard bigraded algebras. Mathematische Zeitschrift 245(2), 309–334 (2003) MathSciNetCrossRef Hoang, N.D., Trung, N.V.: Hilbert polynomials of non-standard bigraded algebras. Mathematische Zeitschrift 245(2), 309–334 (2003) MathSciNetCrossRef
11.
13.
Zurück zum Zitat Vasconcelos, W.: Computational methods in commutative algebra and algebraic geometry, volume 2, Springer Science & Business Media (2004) Vasconcelos, W.: Computational methods in commutative algebra and algebraic geometry, volume 2, Springer Science & Business Media (2004)
Metadaten
Titel
A partial characterization of Hilbert quasi-polynomials in the non-standard case
verfasst von
Massimo Caboara
Carla Mascia
Publikationsdatum
17.04.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 1/2022
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00423-1

Weitere Artikel der Ausgabe 1/2022

Applicable Algebra in Engineering, Communication and Computing 1/2022 Zur Ausgabe

Acknowledgment

Acknowledgment

Premium Partner