Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

14.04.2021

A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies

verfasst von: Marwah Abdulrazzaq Naser, Muntadher Qasim Alsabah, Montadar Abas Taher

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtained. In order to achieve the aforementioned objectives, this paper presents a feasible DL training sequence design based on a partial CSI estimation approach for an FDD massive-MIMO system with a shorter coherence time. To this end, a threshold-based approach is proposed for a suitable DL pilot selection by exploring the statistical information of the channel covariance matrix. The mean square error of the proposed design is derived, and the achievable sum rate and bit-error-rate for maximum ratio transmitter and regularized zero forcing precoding is investigated over different BTS topologies with uniform linear array and uniform rectangular array. The results show that a feasible performance in the DL FDD massive-MIMO systems can be achieved even when a large number of antenna elements are deployed by the BTS and a shorter coherence time is considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The subscript (sim) stands for the Monte Carlo simulation while the subscript (an) stands for the analytical form.
 
Literatur
1.
Zurück zum Zitat Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., et al. (2019). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3), 28–41.CrossRef Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., et al. (2019). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3), 28–41.CrossRef
2.
Zurück zum Zitat Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70–75.MathSciNetCrossRef Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70–75.MathSciNetCrossRef
3.
Zurück zum Zitat Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.CrossRef Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.CrossRef
4.
Zurück zum Zitat Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20–29.CrossRef Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20–29.CrossRef
5.
Zurück zum Zitat Lu, Y., & Zheng, X. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 19,.CrossRef Lu, Y., & Zheng, X. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 19,.CrossRef
6.
Zurück zum Zitat Akyildiz, I.F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, vol. 8, pp. 133 995 Akyildiz, I.F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, vol. 8, pp. 133 995
7.
Zurück zum Zitat Zhang, S., Xiang, C., & Xu, S. (2020). 6G: Connecting everything by 1000 times price reduction. IEEE Open Journal of Vehicular Technology, 1, 107–115.CrossRef Zhang, S., Xiang, C., & Xu, S. (2020). 6G: Connecting everything by 1000 times price reduction. IEEE Open Journal of Vehicular Technology, 1, 107–115.CrossRef
8.
Zurück zum Zitat Gui, G., Liu, M., Tang, F., Kato, N., & Adachi, F. (2020). 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wireless Communications, 27(5), 126–132.CrossRef Gui, G., Liu, M., Tang, F., Kato, N., & Adachi, F. (2020). 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wireless Communications, 27(5), 126–132.CrossRef
9.
Zurück zum Zitat Tariq, F., Khandaker, M. R., Wong, K.-K., Imran, M. A., Bennis, M., & Debbah, M. (2020). A speculative study on 6G. IEEE Wireless Communications, 27(4), 118–125.CrossRef Tariq, F., Khandaker, M. R., Wong, K.-K., Imran, M. A., Bennis, M., & Debbah, M. (2020). A speculative study on 6G. IEEE Wireless Communications, 27(4), 118–125.CrossRef
10.
Zurück zum Zitat Han, C., Jornet, J. M., & Akyildiz, I. (2018).“Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. In 2018 IEEE 87th vehicular technology conference (VTC Spring). IEEE (pp. 1–5). Han, C., Jornet, J. M., & Akyildiz, I. (2018).“Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. In 2018 IEEE 87th vehicular technology conference (VTC Spring). IEEE (pp. 1–5).
11.
Zurück zum Zitat De Carvalho, E., Ali, A., Amiri, A., Angjelichinoski, M., & Heath, R. W. (2020). Non-stationarities in extra-large-scale massive MIMO. IEEE Wireless Communications, 27(4), 74–80.CrossRef De Carvalho, E., Ali, A., Amiri, A., Angjelichinoski, M., & Heath, R. W. (2020). Non-stationarities in extra-large-scale massive MIMO. IEEE Wireless Communications, 27(4), 74–80.CrossRef
12.
Zurück zum Zitat Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.CrossRef Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.CrossRef
13.
Zurück zum Zitat Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
14.
Zurück zum Zitat Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
15.
Zurück zum Zitat Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–22.CrossRef Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–22.CrossRef
16.
Zurück zum Zitat Marzetta, T. L., Larsson, E. G., Yang, H., & Ngo, H. Q. (2016). Fundamentals of Massive MIMO. Cambridge University Press. Marzetta, T. L., Larsson, E. G., Yang, H., & Ngo, H. Q. (2016). Fundamentals of Massive MIMO. Cambridge University Press.
17.
Zurück zum Zitat Medbo, J., Börner, K., Haneda, K., Hovinen, V., Imai, T., Järvelainen, J., Jämsä, T., Karttunen, A., Kusume, K., & Kyröläinen et al. J. (2014). Channel modelling for the fifth generation mobile communications. In The 8th European conference on antennas and propagation (EuCAP 2014). IEEE (pp. 219–223). Medbo, J., Börner, K., Haneda, K., Hovinen, V., Imai, T., Järvelainen, J., Jämsä, T., Karttunen, A., Kusume, K., & Kyröläinen et al. J. (2014). Channel modelling for the fifth generation mobile communications. In The 8th European conference on antennas and propagation (EuCAP 2014). IEEE (pp. 219–223).
18.
Zurück zum Zitat Martínez, À. O., De Carvalho, E., & Nielsen, J. Ø. (2014Towards very large aperture massive MIMO: A measurement based study. In 2014 IEEE Globecom workshops (GC Wkshps). IEEE (pp. 281–286). Martínez, À. O., De Carvalho, E., & Nielsen, J. Ø. (2014Towards very large aperture massive MIMO: A measurement based study. In 2014 IEEE Globecom workshops (GC Wkshps). IEEE (pp. 281–286).
19.
Zurück zum Zitat Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef
20.
Zurück zum Zitat Yang, H., & Marzetta, T.L. (2013). Total energy efficiency of cellular large scale antenna system multiple access mobile networks. In 2013 IEEE online conference on green communications (OnlineGreenComm). IEEE (pp. 27–32). Yang, H., & Marzetta, T.L. (2013). Total energy efficiency of cellular large scale antenna system multiple access mobile networks. In 2013 IEEE online conference on green communications (OnlineGreenComm). IEEE (pp. 27–32).
21.
Zurück zum Zitat Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.CrossRef Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.CrossRef
22.
Zurück zum Zitat Müller, R. R., Cottatellucci, L., & Vehkapera, M. (2014). Blind pilot decontamination. IEEE Journal of Selected Topics in Signal Processing, 8(5), 773–786.CrossRef Müller, R. R., Cottatellucci, L., & Vehkapera, M. (2014). Blind pilot decontamination. IEEE Journal of Selected Topics in Signal Processing, 8(5), 773–786.CrossRef
23.
Zurück zum Zitat Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRef Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRef
24.
Zurück zum Zitat Yin, H., Cottatellucci, L., Gesbert, D., Müller, R. R., & He, G. (2016). Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Transactions on Signal Processing, 64(11), 2990–3003.MathSciNetMATHCrossRef Yin, H., Cottatellucci, L., Gesbert, D., Müller, R. R., & He, G. (2016). Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Transactions on Signal Processing, 64(11), 2990–3003.MathSciNetMATHCrossRef
25.
Zurück zum Zitat Björnson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO has unlimited capacity. IEEE Transactions on Wireless Communications, 17(1), 574–590.CrossRef Björnson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO has unlimited capacity. IEEE Transactions on Wireless Communications, 17(1), 574–590.CrossRef
27.
Zurück zum Zitat Kaltenberger, F., Jiang, H., Guillaud, M., & Knopp, R. (2010). “Relative channel reciprocity calibration in MIMO/TDD systems,” in Future Network & Mobile Summit, Florence, Italy. IEEE, 16-18 June, pp. 1–10. Kaltenberger, F., Jiang, H., Guillaud, M., & Knopp, R. (2010). “Relative channel reciprocity calibration in MIMO/TDD systems,” in Future Network & Mobile Summit, Florence, Italy. IEEE, 16-18 June, pp. 1–10.
28.
Zurück zum Zitat Bjrnson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2013).“Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits,” in 18th International Conference on Digital Signal Processing (DSP), July July, pp. 1–6. Bjrnson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2013).“Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits,” in 18th International Conference on Digital Signal Processing (DSP), July July, pp. 1–6.
29.
Zurück zum Zitat Mi, D., Dianati, M., Zhang, L., Muhaidat, S., & Tafazolli, R. (2017). Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Transactions on Communications, 65(9), 3734–3749.CrossRef Mi, D., Dianati, M., Zhang, L., Muhaidat, S., & Tafazolli, R. (2017). Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Transactions on Communications, 65(9), 3734–3749.CrossRef
30.
Zurück zum Zitat Vieira, J., Rusek, F., Edfors, O., Malkowsky, S., Liu, L., & Tufvesson, F. (2017). Reciprocity calibration for massive MIMO: Proposal, modeling, and validation. IEEE Transactions on Wireless Communications, 16(5), 3042–3056.CrossRef Vieira, J., Rusek, F., Edfors, O., Malkowsky, S., Liu, L., & Tufvesson, F. (2017). Reciprocity calibration for massive MIMO: Proposal, modeling, and validation. IEEE Transactions on Wireless Communications, 16(5), 3042–3056.CrossRef
31.
Zurück zum Zitat Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge University Press. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge University Press.
32.
Zurück zum Zitat Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.MATHCrossRef Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.MATHCrossRef
33.
Zurück zum Zitat Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
34.
Zurück zum Zitat Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communications Magazine, 54(2), 114–123.CrossRef Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communications Magazine, 54(2), 114–123.CrossRef
35.
Zurück zum Zitat Alsabah, M., Vehkapera, M., & O’Farrell, T. (2020). Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems. IEEE Access, 8, 108731–108747.CrossRef Alsabah, M., Vehkapera, M., & O’Farrell, T. (2020). Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems. IEEE Access, 8, 108731–108747.CrossRef
36.
Zurück zum Zitat Naser, M. A., Alsabah, M., Mahmmod, B. M., Noordin, N. K., Abdulhussain, S. H., & Baker, T. (2020). Downlink training design for FDD massive MIMO systems in the presence of colored noise. Electronics, 9(12), 2155.CrossRef Naser, M. A., Alsabah, M., Mahmmod, B. M., Noordin, N. K., Abdulhussain, S. H., & Baker, T. (2020). Downlink training design for FDD massive MIMO systems in the presence of colored noise. Electronics, 9(12), 2155.CrossRef
37.
Zurück zum Zitat Adhikary, A., Nam, J., Ahn, J. Y., & Caire, G. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.MathSciNetMATHCrossRef Adhikary, A., Nam, J., Ahn, J. Y., & Caire, G. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.MathSciNetMATHCrossRef
38.
Zurück zum Zitat Nam, J., Caire, G., & Ha, J. (2017). On the role of transmit correlation diversity in multiuser MIMO systems. IEEE Transactions on Information Theory, 63(1), 336–354.MathSciNetMATHCrossRef Nam, J., Caire, G., & Ha, J. (2017). On the role of transmit correlation diversity in multiuser MIMO systems. IEEE Transactions on Information Theory, 63(1), 336–354.MathSciNetMATHCrossRef
39.
Zurück zum Zitat Rao, X., & Lau, V. K. (2014). Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Transactions on Signal Processing, 62(12), 3261–3271.MathSciNetMATHCrossRef Rao, X., & Lau, V. K. (2014). Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Transactions on Signal Processing, 62(12), 3261–3271.MathSciNetMATHCrossRef
40.
Zurück zum Zitat Gao, Z., Dai, L., Wang, Z., & Chen, S. (2015). Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Transactions on Signal Processing, 63(23), 6169–6183.MathSciNetMATHCrossRef Gao, Z., Dai, L., Wang, Z., & Chen, S. (2015). Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Transactions on Signal Processing, 63(23), 6169–6183.MathSciNetMATHCrossRef
41.
Zurück zum Zitat Gao, Z., Dai, L., Dai, W., Shim, B., & Wang, Z. (2016). Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Transactions on Communications, 64(2), 601–617.CrossRef Gao, Z., Dai, L., Dai, W., Shim, B., & Wang, Z. (2016). Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Transactions on Communications, 64(2), 601–617.CrossRef
42.
Zurück zum Zitat Han, Y., Lee, J., & Love, D. J. (2017). Compressed sensing-aided downlink channel training for FDD massive MIMO systems. IEEE Transactions on Communications, 65(7), 2852–2862.CrossRef Han, Y., Lee, J., & Love, D. J. (2017). Compressed sensing-aided downlink channel training for FDD massive MIMO systems. IEEE Transactions on Communications, 65(7), 2852–2862.CrossRef
43.
Zurück zum Zitat Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802–814.CrossRef Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802–814.CrossRef
44.
Zurück zum Zitat Noh, S., Zoltowski, M. D., Sung, Y., & Love, D. J. (2014). Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 787–801.CrossRef Noh, S., Zoltowski, M. D., Sung, Y., & Love, D. J. (2014). Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 787–801.CrossRef
45.
Zurück zum Zitat So, J., Kim, D., Lee, Y., & Sung, Y. (2015). Pilot signal design for massive MIMO systems: A received signal-to-noise-ratio-based approach. IEEE Signal Processing Letters, 22(5), 549–553.CrossRef So, J., Kim, D., Lee, Y., & Sung, Y. (2015). Pilot signal design for massive MIMO systems: A received signal-to-noise-ratio-based approach. IEEE Signal Processing Letters, 22(5), 549–553.CrossRef
46.
Zurück zum Zitat Xie, H., Gao, F., Zhang, S., & Jin, S. (2016). A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Transactions on Vehicular Technology, 66(4), 3170–3184.CrossRef Xie, H., Gao, F., Zhang, S., & Jin, S. (2016). A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Transactions on Vehicular Technology, 66(4), 3170–3184.CrossRef
47.
Zurück zum Zitat Stein, S. (1987). Fading channel issues in system engineering. IEEE Journal on Selected Areas in Communications, 5(2), 68–89.CrossRef Stein, S. (1987). Fading channel issues in system engineering. IEEE Journal on Selected Areas in Communications, 5(2), 68–89.CrossRef
48.
Zurück zum Zitat Shiu, D.-S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.CrossRef Shiu, D.-S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.CrossRef
49.
Zurück zum Zitat Molisch, A. F. (2012). Wireless communications. Wiley. Molisch, A. F. (2012). Wireless communications. Wiley.
50.
Zurück zum Zitat Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2015). An adaptive threshold feedback compression scheme based on channel quality indicator (cqi) in long term evolution (lte) system. Wireless Personal Communications, 82(4), 2323–2349.CrossRef Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2015). An adaptive threshold feedback compression scheme based on channel quality indicator (cqi) in long term evolution (lte) system. Wireless Personal Communications, 82(4), 2323–2349.CrossRef
51.
Zurück zum Zitat Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). Approximate linear minimum mean square error estimation based on channel quality indicator feedback in LTE systems. In 2013 IEEE 11th Malaysia international conference on communications (MICC). IEEE (pp. 446–451). Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). Approximate linear minimum mean square error estimation based on channel quality indicator feedback in LTE systems. In 2013 IEEE 11th Malaysia international conference on communications (MICC). IEEE (pp. 446–451).
52.
Zurück zum Zitat Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). A channel quality indicator (CQI) prediction scheme using feed forward neural network (FF-NN) technique for MU-MIMO LTE system. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT). IEEE, 2014 (pp. 17–22). Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). A channel quality indicator (CQI) prediction scheme using feed forward neural network (FF-NN) technique for MU-MIMO LTE system. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT). IEEE, 2014 (pp. 17–22).
53.
Zurück zum Zitat Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2014). Review of channel quality indicator estimation schemes for multi-user MIMO in 3GPP LTE/LTE-A systems. KSII Transactions on Internet & Information Systems, 8(6), 1848–1868.CrossRef Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2014). Review of channel quality indicator estimation schemes for multi-user MIMO in 3GPP LTE/LTE-A systems. KSII Transactions on Internet & Information Systems, 8(6), 1848–1868.CrossRef
54.
Zurück zum Zitat Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Ali, B. M., & Sali, A. (2017). A partial feedback reporting scheme for LTE mobile video transmission with QoS provisioning. Computer Networks, 112, 108–121.CrossRef Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Ali, B. M., & Sali, A. (2017). A partial feedback reporting scheme for LTE mobile video transmission with QoS provisioning. Computer Networks, 112, 108–121.CrossRef
55.
Zurück zum Zitat Kay, S. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall. Kay, S. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall.
56.
Zurück zum Zitat Goldsmith, A. (2005). Wireless communications. Cambridge University Press. Goldsmith, A. (2005). Wireless communications. Cambridge University Press.
57.
Zurück zum Zitat Biguesh, M., & Gershman, A. B. (2006). Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 54(3), 884–893.MATHCrossRef Biguesh, M., & Gershman, A. B. (2006). Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 54(3), 884–893.MATHCrossRef
58.
Zurück zum Zitat Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Sali, A., & Mohd Ali, B. (2013). Radio resource management for green 3g pp long term evolution cellular networks: Review and trade-offs. IETE Technical Review, 30(3), 257–269.CrossRef Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Sali, A., & Mohd Ali, B. (2013). Radio resource management for green 3g pp long term evolution cellular networks: Review and trade-offs. IETE Technical Review, 30(3), 257–269.CrossRef
59.
Zurück zum Zitat Petersen, K. B., & Michael, S. P. (2008). The matrix cookbook. University of Denmark, 7(15), 1704–1714. Petersen, K. B., & Michael, S. P. (2008). The matrix cookbook. University of Denmark, 7(15), 1704–1714.
60.
Zurück zum Zitat Chizhik, D., Ling, J., Wolniansky, P. W., Valenzuela, R. A., Costa, N., & Huber, K. (2003). Multiple-input-multiple-output measurements and modeling in manhattan. IEEE Journal on Selected Areas in Communications, 21(3), 321–331.CrossRef Chizhik, D., Ling, J., Wolniansky, P. W., Valenzuela, R. A., Costa, N., & Huber, K. (2003). Multiple-input-multiple-output measurements and modeling in manhattan. IEEE Journal on Selected Areas in Communications, 21(3), 321–331.CrossRef
61.
Zurück zum Zitat Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., & Beach, M. (2004). Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 53(3), 655–665.CrossRef Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., & Beach, M. (2004). Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 53(3), 655–665.CrossRef
62.
Zurück zum Zitat Wallace, J. W., & Jensen, M. A. (2001). Measured characteristics of the MIMO wireless channel. In IEEE 54th vehicular technology conference. VTC Fall 2001, (Vol. 4, pp. 2038–2042). Wallace, J. W., & Jensen, M. A. (2001). Measured characteristics of the MIMO wireless channel. In IEEE 54th vehicular technology conference. VTC Fall 2001, (Vol. 4, pp. 2038–2042).
63.
Zurück zum Zitat Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.CrossRef Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.CrossRef
64.
Zurück zum Zitat Jakes, W.C., & Cox, D.C. (1994). Microwave mobile communications. Wiley-IEEE Press Jakes, W.C., & Cox, D.C. (1994). Microwave mobile communications. Wiley-IEEE Press
65.
Zurück zum Zitat Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef
66.
Zurück zum Zitat Pouttu, A., Burkhardt, F., Patachia, C., Mendes, L., Brazil, G.R., Pirttikangas, S., Jou, E., Kuvaja, P., Finland, F.T., Heikkilä et al. M. (2020). 6G white paper on validation and trials for verticals towards 2030s1. preprint Pouttu, A., Burkhardt, F., Patachia, C., Mendes, L., Brazil, G.R., Pirttikangas, S., Jou, E., Kuvaja, P., Finland, F.T., Heikkilä et al. M. (2020). 6G white paper on validation and trials for verticals towards 2030s1. preprint
Metadaten
Titel
A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies
verfasst von
Marwah Abdulrazzaq Naser
Muntadher Qasim Alsabah
Montadar Abas Taher
Publikationsdatum
14.04.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08423-1

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt