Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

22.03.2022

A Performance Comparison of Robust Models in Wind Turbines Power Curve Estimation: A Case Study

verfasst von: Luis Gustavo Mota Souza, Dhiego Carvalho Santos

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The power curve modeling for wind turbines is a key tool used to predict the generated electric power, and to monitor and operate wind turbines, directly affecting the investments in wind farms. However, the collected data can sometimes contain outliers, which can significantly affect the modeling. A classic technique widely used for this purpose is called Polynomial Regression and recently, the use of the Multilayer Perceptron Network (MLP) has been gaining prominence. More recently, the Extreme Learning Machine (ELM) was developed, and it has been validated as a plausible solution for global modeling. In this paper, in addition to the mentioned techniques, the following Artificial Neural Networks (ANN) are also presented: the Self-Organizing Map with K winners (KSOM) and the Local Linear Mapping (LLM), which are based on local modeling. These models are implemented using Ordinary Least Squares (OLS) and M-estimator techniques to obtain the parameters used in the estimation and to verify the effect of the outliers on the input data. By employing qualitative and quantitative analysis, the obtained results prove that the proposed models based on local modeling are a realistic alternative to the conventional methods for estimating the power curve in wind turbines.
Fußnoten
1
This method is used in the robustfit function implemented in Matlab®
 
2
We assume that all vectors are column-vectors, unless stated otherwise.
 
4
In Octave and Matlab, the function polyfit quickly implements this model once the (x; y) pairs and the polynomial order are provided
 
5
In MS Excel, for example, the maximum order allowed for the polynomial model is \(r=6\).
 
Literatur
1.
Zurück zum Zitat Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained: theory, design and application. John Wiey & Sons, USA Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained: theory, design and application. John Wiey & Sons, USA
2.
Zurück zum Zitat Francis N (2008) Predicting sudden changes in wind power generation. N Am Windpower 5(9):58–60 Francis N (2008) Predicting sudden changes in wind power generation. N Am Windpower 5(9):58–60
3.
Zurück zum Zitat Ouyang T, Kusiak A, He Y (2017) Modeling wind-turbine power curve: a data partitioning and mining approach. Renew Energy 102:1–8 CrossRef Ouyang T, Kusiak A, He Y (2017) Modeling wind-turbine power curve: a data partitioning and mining approach. Renew Energy 102:1–8 CrossRef
4.
Zurück zum Zitat Shokrzadeh S, Jozani MJ, Bibeau E (2014) Wind turbine power curve modeling using advanced parametric and nonparametric methods. IEEE Trans Sustain Energy 5:1262–1269 CrossRef Shokrzadeh S, Jozani MJ, Bibeau E (2014) Wind turbine power curve modeling using advanced parametric and nonparametric methods. IEEE Trans Sustain Energy 5:1262–1269 CrossRef
5.
Zurück zum Zitat Kusiak A, Zheng H, Song Z (2009) Models for monitoring wind farm power. Renew Energy 34(3):583–590 CrossRef Kusiak A, Zheng H, Song Z (2009) Models for monitoring wind farm power. Renew Energy 34(3):583–590 CrossRef
6.
Zurück zum Zitat Sainz E, Llombart A, Guerrero JJ (2009) Robust filtering for the characterization of wind turbines: improving its operation and maintenance. Energy Convers Manag 50(9):2136–2147 CrossRef Sainz E, Llombart A, Guerrero JJ (2009) Robust filtering for the characterization of wind turbines: improving its operation and maintenance. Energy Convers Manag 50(9):2136–2147 CrossRef
7.
Zurück zum Zitat Marvuglia A, Messineo A (2012) Monitoring of wind farms’ power curves using machine learning techniques. Applied Energy 98:574–583 Marvuglia A, Messineo A (2012) Monitoring of wind farms’ power curves using machine learning techniques. Applied Energy 98:574–583
8.
Zurück zum Zitat Üstüntaş T, Şahin AD (2008) Wind turbine power curve estimation based on cluster center fuzzy logic modeling. J Wind Eng Ind Aerodyn 96(5):611–620 CrossRef Üstüntaş T, Şahin AD (2008) Wind turbine power curve estimation based on cluster center fuzzy logic modeling. J Wind Eng Ind Aerodyn 96(5):611–620 CrossRef
9.
Zurück zum Zitat Schlechtingen M, Santos IF, Achiche S (2013) Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans Sustain Energy 4:671–679 CrossRef Schlechtingen M, Santos IF, Achiche S (2013) Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans Sustain Energy 4:671–679 CrossRef
10.
Zurück zum Zitat Abonyi J, Nemeth S, Vincze C, Arva P (2003) Process analysis and product quality estimation by Self-Organizing Maps with an application to polyethylene production. Comput Ind 52(3):221–234 CrossRef Abonyi J, Nemeth S, Vincze C, Arva P (2003) Process analysis and product quality estimation by Self-Organizing Maps with an application to polyethylene production. Comput Ind 52(3):221–234 CrossRef
11.
Zurück zum Zitat Barreto GA, Araújo AFR (2004) Identification and control of dynamical systems using the self-organizing map. IEEE Trans Neural Netw 15(5):1244–1259 CrossRef Barreto GA, Araújo AFR (2004) Identification and control of dynamical systems using the self-organizing map. IEEE Trans Neural Netw 15(5):1244–1259 CrossRef
12.
Zurück zum Zitat Barreto GA, Souza LGM (2006) Adaptive filtering with the self-organizing map: a performance comparison. Neural Netw 19(6):785–798 CrossRef Barreto GA, Souza LGM (2006) Adaptive filtering with the self-organizing map: a performance comparison. Neural Netw 19(6):785–798 CrossRef
13.
Zurück zum Zitat Cho J, Principe J, Erdogmus D, Motter M (2006) Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map. IEEE Trans Neural Netw 17(2):445–460 CrossRef Cho J, Principe J, Erdogmus D, Motter M (2006) Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map. IEEE Trans Neural Netw 17(2):445–460 CrossRef
14.
Zurück zum Zitat Cho J, Principe J, Erdogmus D, Motter M (2007) Quasi-sliding mode control strategy based on multiple linear models. Neurocomputing 70(4–6):962–974 Cho J, Principe J, Erdogmus D, Motter M (2007) Quasi-sliding mode control strategy based on multiple linear models. Neurocomputing 70(4–6):962–974
15.
Zurück zum Zitat Liu J, Djurdjanovic D (2008) Topology preservation and cooperative learning in identification of multiple model systems. IEEE Trans Neural Netw 19(12):2065–2072 CrossRef Liu J, Djurdjanovic D (2008) Topology preservation and cooperative learning in identification of multiple model systems. IEEE Trans Neural Netw 19(12):2065–2072 CrossRef
16.
Zurück zum Zitat Papadakis SE, Kaburlasos VG (2010) Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (ins). Inf Sci 180(24):5060–5076 Papadakis SE, Kaburlasos VG (2010) Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (ins). Inf Sci 180(24):5060–5076
17.
Zurück zum Zitat Principe JC, Wang L, Motter MA (1998) Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc IEEE 86(11):2240–2258 CrossRef Principe JC, Wang L, Motter MA (1998) Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc IEEE 86(11):2240–2258 CrossRef
18.
Zurück zum Zitat Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE 84(10):1358–1384 CrossRef Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE 84(10):1358–1384 CrossRef
19.
Zurück zum Zitat Kohonen T (2013) Essentials of the self-organizing map. Neural Netw 37:52–65. Twenty-fifth Anniversay Commemorative Issue Kohonen T (2013) Essentials of the self-organizing map. Neural Netw 37:52–65. Twenty-fifth Anniversay Commemorative Issue
20.
Zurück zum Zitat Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501 CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501 CrossRef
21.
Zurück zum Zitat Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48 CrossRef Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48 CrossRef
22.
Zurück zum Zitat Li S, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Solar Energy Eng 123(4):327–332 CrossRef Li S, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Solar Energy Eng 123(4):327–332 CrossRef
23.
Zurück zum Zitat Lydia M, Immanuel Selvakumar A, Suresh Kumar S, Edwin Prem Kumar G (2013) Advanced algorithms for wind turbine power curve modeling. IEEE Trans Sustain Energy 4:827–835 CrossRef Lydia M, Immanuel Selvakumar A, Suresh Kumar S, Edwin Prem Kumar G (2013) Advanced algorithms for wind turbine power curve modeling. IEEE Trans Sustain Energy 4:827–835 CrossRef
24.
Zurück zum Zitat Pelletier F, Masson C, Tahan A (2016) Wind turbine power curve modelling using artificial neural network. Renew Energy 89:207–214 CrossRef Pelletier F, Masson C, Tahan A (2016) Wind turbine power curve modelling using artificial neural network. Renew Energy 89:207–214 CrossRef
25.
Zurück zum Zitat Pei S, Li Y (2019) Wind turbine power curve modeling with a hybrid machine learning technique. Appl Sci 9(22) Pei S, Li Y (2019) Wind turbine power curve modeling with a hybrid machine learning technique. Appl Sci 9(22)
26.
Zurück zum Zitat Wang K, Cao J, Pei H (2020) Robust extreme learning machine in the presence of outliers by iterative reweighted algorithm. Appl Math Comput 377:125186 MathSciNetMATH Wang K, Cao J, Pei H (2020) Robust extreme learning machine in the presence of outliers by iterative reweighted algorithm. Appl Math Comput 377:125186 MathSciNetMATH
27.
Zurück zum Zitat Zhang K, Luo M (2015) Outlier-robust extreme learning machine for regression problems. Neurocomputing 151:1519–1527 CrossRef Zhang K, Luo M (2015) Outlier-robust extreme learning machine for regression problems. Neurocomputing 151:1519–1527 CrossRef
28.
Zurück zum Zitat Barreto GA, Barros ALBP (2016) A robust extreme learning machine for pattern classification with outliers. Neurocomputing 176:3–13 CrossRef Barreto GA, Barros ALBP (2016) A robust extreme learning machine for pattern classification with outliers. Neurocomputing 176:3–13 CrossRef
29.
Zurück zum Zitat Yesilbudak M (2018) Implementation of novel hybrid approaches for power curve modeling of wind turbines. Energy Convers Manag 171:156–169 CrossRef Yesilbudak M (2018) Implementation of novel hybrid approaches for power curve modeling of wind turbines. Energy Convers Manag 171:156–169 CrossRef
30.
Zurück zum Zitat Barreto GA, Barros ALBP (2015) On the design of robust linear pattern classifiers based on M-estimators. Neural Process Lett 42:119–137 CrossRef Barreto GA, Barros ALBP (2015) On the design of robust linear pattern classifiers based on M-estimators. Neural Process Lett 42:119–137 CrossRef
32.
Zurück zum Zitat Barreto GA, Mota JCM, Souza LGM, Frota RA (2004) Nonstationary time series prediction using local models based on competitive neural networks. Lecture Notes Comput Sci 3029:1146–1155 CrossRef Barreto GA, Mota JCM, Souza LGM, Frota RA (2004) Nonstationary time series prediction using local models based on competitive neural networks. Lecture Notes Comput Sci 3029:1146–1155 CrossRef
33.
Zurück zum Zitat Barreto GA, Mota JCM, Souza LGM, Frota RA (2003) Previsão de séries temporais não-estacionárias usando modelos locais baseados em redes neurais competitivas. In: Anais do VI impósio Brasileiro de Automação Inteligente (SBAI’03), pp 941–946 Barreto GA, Mota JCM, Souza LGM, Frota RA (2003) Previsão de séries temporais não-estacionárias usando modelos locais baseados em redes neurais competitivas. In: Anais do VI impósio Brasileiro de Automação Inteligente (SBAI’03), pp 941–946
34.
Zurück zum Zitat Souza LGM, Barreto GA (2010) On building local models for inverse system identification with vector quantization algorithms. Neurocomputing 73(10):1993–2005. Subspace Learning / Selected papers from the European Symposium on Time Series Prediction Souza LGM, Barreto GA (2010) On building local models for inverse system identification with vector quantization algorithms. Neurocomputing 73(10):1993–2005. Subspace Learning / Selected papers from the European Symposium on Time Series Prediction
35.
Zurück zum Zitat Haykin S (2008) Neural networks and learning machines, 3rd (edn). Prentice Hall Haykin S (2008) Neural networks and learning machines, 3rd (edn). Prentice Hall
36.
Zurück zum Zitat Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: fundamentals through simulations. John Wiley & Sons, USA Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: fundamentals through simulations. John Wiley & Sons, USA
37.
Zurück zum Zitat Walter J, Ritter H, Schulten K (1990) Non-linear prediction with self-organizing map. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN’90), vol 1, pp 587–592 Walter J, Ritter H, Schulten K (1990) Non-linear prediction with self-organizing map. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN’90), vol 1, pp 587–592
38.
Zurück zum Zitat Chen J-Q, Xi Y-G (1998) Nonlinear system modeling by competitive learning and adaptive fuzzy inference system. IEEE Trans Syst Man Cybern Part C 28(2):231–238 CrossRef Chen J-Q, Xi Y-G (1998) Nonlinear system modeling by competitive learning and adaptive fuzzy inference system. IEEE Trans Syst Man Cybern Part C 28(2):231–238 CrossRef
39.
Zurück zum Zitat Soukissian Takvor H, Karathanasi Flora E (2016) On the use of robust regression methods in wind speed assessment. Renew Energy 99:1287–1298 CrossRef Soukissian Takvor H, Karathanasi Flora E (2016) On the use of robust regression methods in wind speed assessment. Renew Energy 99:1287–1298 CrossRef
40.
Zurück zum Zitat Lee G, Ding Y, Genton MG, Xie L (2015) Power curve estimation with multivariate environmental factors for inland and offshore wind farms. J Am Stat Assoc 110(509):56–67 MathSciNetCrossRef Lee G, Ding Y, Genton MG, Xie L (2015) Power curve estimation with multivariate environmental factors for inland and offshore wind farms. J Am Stat Assoc 110(509):56–67 MathSciNetCrossRef
41.
Zurück zum Zitat Sohoni V, Gupta SC, Nema RK (2016) A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. J Energy 2016:1–18 CrossRef Sohoni V, Gupta SC, Nema RK (2016) A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. J Energy 2016:1–18 CrossRef
42.
Zurück zum Zitat Lydia M, Suresh Kumar S, Immanuel Selvakumar A, Edwin Prem Kumar G (2014) A comprehensive review on wind turbine power curve modeling techniques. Renew Sustain Energy Rev 30:452–460 CrossRef Lydia M, Suresh Kumar S, Immanuel Selvakumar A, Edwin Prem Kumar G (2014) A comprehensive review on wind turbine power curve modeling techniques. Renew Sustain Energy Rev 30:452–460 CrossRef
43.
Zurück zum Zitat Wang Y, Hu Q, Srinivasan D, Wang Z (2019) Wind power curve modeling and wind power forecasting with inconsistent data. IEEE Trans Sustain Energy 10(1):16–25 CrossRef Wang Y, Hu Q, Srinivasan D, Wang Z (2019) Wind power curve modeling and wind power forecasting with inconsistent data. IEEE Trans Sustain Energy 10(1):16–25 CrossRef
44.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536 CrossRef Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536 CrossRef
Metadaten
Titel
A Performance Comparison of Robust Models in Wind Turbines Power Curve Estimation: A Case Study
verfasst von
Luis Gustavo Mota Souza
Dhiego Carvalho Santos
Publikationsdatum
22.03.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10772-2

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe