Skip to main content

2024 | OriginalPaper | Buchkapitel

7. A Perturbed Mann-Type Algorithm for Zeros of Maximal Monotone Mappings

verfasst von : Oumar Abdel Kader Aghrabatt, Aminata D. Diene, Ngalla Djitte

Erschienen in: Mathematics of Computer Science, Cybersecurity and Artificial Intelligence

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel befasst sich mit der Erforschung maximaler monotoner Abbildungen, einem entscheidenden Konzept für nichtlineare Analyse und Optimierung. Es beginnt damit, monotone und stark monotone Operatoren in realen Hilbert- und Banach-Räumen zu definieren und ihre Bedeutung in verschiedenen mathematischen Kontexten hervorzuheben. Das Hauptaugenmerk liegt auf der Entwicklung eines neuen iterativen Algorithmus zur Annäherung von Nullen an begrenzte maximale monotone Mappings, der bisherige Methoden vereinfacht und erweitert. Der Algorithmus ist so konzipiert, dass er effizienter ist und in einem breiteren Spektrum von Banach-Räumen anwendbar. Zusätzlich wendet das Kapitel diese Ergebnisse auf differenzierbare konvexe Minimierungsprobleme an und demonstriert den praktischen Nutzen des vorgeschlagenen Algorithmus. Die Beweismethode und die spezifischen Bedingungen, unter denen der Algorithmus stark konvergiert, werden ebenfalls hervorgehoben, was das Kapitel zu einer wertvollen Ressource für Forscher und Praktiker auf diesem Gebiet macht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adoum, A. A., Sene, M., Ndiaye, M., Djitte, N., A Mann Type iterative algorithm for bounded and strongly monotone mappings in certain Banach spaces, In: Seck, D., Kangni, K., Nang, P., Salomon Sambou, M. (eds) Nonlinear Analysis, Geometry and ApplicationsTrends in Mathematics. Birkhäuser, Cham, 2023 Adoum, A. A., Sene, M., Ndiaye, M., Djitte, N., A Mann Type iterative algorithm for bounded and strongly monotone mappings in certain Banach spaces, In: Seck, D., Kangni, K., Nang, P., Salomon Sambou, M. (eds) Nonlinear Analysis, Geometry and ApplicationsTrends in Mathematics. Birkhäuser, Cham, 2023
2.
Zurück zum Zitat Berinde, V., Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Springer, London, UK, 2007. Berinde, V., Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Springer, London, UK, 2007.
3.
Zurück zum Zitat Berinde, V., St. Maruster, I.A. Rus, An abstract point of view on iterative approximation of fixed points of nonself operators, J. Nonlinear Convex Anal. 15 (2014), no. 5, 851–865.MathSciNet Berinde, V., St. Maruster, I.A. Rus, An abstract point of view on iterative approximation of fixed points of nonself operators, J. Nonlinear Convex Anal. 15 (2014), no. 5, 851–865.MathSciNet
4.
Zurück zum Zitat Browder, F.E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. vol. 73 (1967), 875–882.MathSciNetCrossRef Browder, F.E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. vol. 73 (1967), 875–882.MathSciNetCrossRef
5.
Zurück zum Zitat Bruck Jr, R. E., A strongly convergent iterative solution of\(0\in U(x)\)for a maximal monotone operatorUin Hilbert spaces, J. Math. Anal. Appl., vol. 48 (1974), 114–126.MathSciNetCrossRef Bruck Jr, R. E., A strongly convergent iterative solution of\(0\in U(x)\)for a maximal monotone operatorUin Hilbert spaces, J. Math. Anal. Appl., vol. 48 (1974), 114–126.MathSciNetCrossRef
6.
7.
Zurück zum Zitat Reich S.; Strong Convergence theorems for resolvents of accretive operators in Banach spaces, in J. Math. Anal. Appl.183 (1994), 118–120. Reich S.; Strong Convergence theorems for resolvents of accretive operators in Banach spaces, in J. Math. Anal. Appl.183 (1994), 118–120.
8.
Zurück zum Zitat Censor Y., Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, vol. 37, no. 4 (1996), pp. 323–339.MathSciNetCrossRef Censor Y., Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, vol. 37, no. 4 (1996), pp. 323–339.MathSciNetCrossRef
9.
Zurück zum Zitat Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear iterations, vol. 1965 of Lectures Notes in Mathematics, Springer, London, UK, 2009. Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear iterations, vol. 1965 of Lectures Notes in Mathematics, Springer, London, UK, 2009.
10.
Zurück zum Zitat Chidume, C. E., Ali Bashir, Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., vol. 326 (2007), pp. 960–973.MathSciNetCrossRef Chidume, C. E., Ali Bashir, Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., vol. 326 (2007), pp. 960–973.MathSciNetCrossRef
11.
Zurück zum Zitat Chidume, C. E., An approximation method for monotone Lipschitzian operators in Hilbert-spaces, Journal of the Australian Mathematical Society series A-pure mathematics and statistics, vol. 41 (1986), pp. 59–63.MathSciNetCrossRef Chidume, C. E., An approximation method for monotone Lipschitzian operators in Hilbert-spaces, Journal of the Australian Mathematical Society series A-pure mathematics and statistics, vol. 41 (1986), pp. 59–63.MathSciNetCrossRef
12.
Zurück zum Zitat Chidume, C. E., Convergence theorems for asymptotically pseudo-contractive mappings, Nonlinear Analysis-Theory Methods & Applications, vol. 49 (2002), pp. 1–11.MathSciNetCrossRef Chidume, C. E., Convergence theorems for asymptotically pseudo-contractive mappings, Nonlinear Analysis-Theory Methods & Applications, vol. 49 (2002), pp. 1–11.MathSciNetCrossRef
13.
Zurück zum Zitat Chidume, C. E., Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 99 (1987), no. 2,pp. 283–288. Chidume, C. E., Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 99 (1987), no. 2,pp. 283–288.
14.
Zurück zum Zitat Chidume, C. E., Djitte, N., Sene, M., Iterative algorithm for zeros of multivalued accretive operators in certain Banach spaces, Afr. Mat., 26(2015), no. 3–4, 357–368. Chidume, C. E., Djitte, N., Sene, M., Iterative algorithm for zeros of multivalued accretive operators in certain Banach spaces, Afr. Mat., 26(2015), no. 3–4, 357–368.
15.
Zurück zum Zitat Chidume, C. E., Chidume, C. O., Convergence theorems for fixed points of uniformly continuous generalized Phi-hemi-contractive mappings, J. Math. Anal. Appl., vol. 303 (2005), pp. 545–554.MathSciNetCrossRef Chidume, C. E., Chidume, C. O., Convergence theorems for fixed points of uniformly continuous generalized Phi-hemi-contractive mappings, J. Math. Anal. Appl., vol. 303 (2005), pp. 545–554.MathSciNetCrossRef
16.
Zurück zum Zitat Chidume, C. E., Chidume, C. O., Convergence theorem for zeros of generalized Phi-quasi-accretive operators, Proc. Amer. Math. Soc., vol. 134 (2006), pp. 243–251.MathSciNetCrossRef Chidume, C. E., Chidume, C. O., Convergence theorem for zeros of generalized Phi-quasi-accretive operators, Proc. Amer. Math. Soc., vol. 134 (2006), pp. 243–251.MathSciNetCrossRef
17.
Zurück zum Zitat Chidume, C. E., Djitte, N., Iterative algorithm for zeros of boundedm-Accretive nonlinear operators, to appear, J. Nonlinear and convex analysis. Chidume, C. E., Djitte, N., Iterative algorithm for zeros of boundedm-Accretive nonlinear operators, to appear, J. Nonlinear and convex analysis.
18.
Zurück zum Zitat Chidume, C. E., Djitte, N., Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, J. Abstract and Applied Analysis, Volume 2012, Article ID 681348, 19 pages, doi:10.1155/2012/681348. Chidume, C. E., Djitte, N., Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, J. Abstract and Applied Analysis, Volume 2012, Article ID 681348, 19 pages, doi:10.1155/2012/681348.
19.
Zurück zum Zitat Chidume, C. E., Osilike, M. O., Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces, Nonlinear Analysis-Theory Methods & Applications, vol. 36 (1999), pp. 863–872.MathSciNetCrossRef Chidume, C. E., Osilike, M. O., Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces, Nonlinear Analysis-Theory Methods & Applications, vol. 36 (1999), pp. 863–872.MathSciNetCrossRef
20.
Zurück zum Zitat Chidume C. E. and Zegeye H.; Approximate fixed point sequence and convergence theorems for Lipschitz pseudo-contractive maps, Proc. Amer. Math. Soc. 132 (2004), no. 831–840. Chidume C. E. and Zegeye H.; Approximate fixed point sequence and convergence theorems for Lipschitz pseudo-contractive maps, Proc. Amer. Math. Soc. 132 (2004), no. 831–840.
21.
Zurück zum Zitat Chidume C. E., Mutangadura S. A., An example on the Mann itération method for Lipschitz pseudocontrations, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2359–2363.MathSciNetCrossRef Chidume C. E., Mutangadura S. A., An example on the Mann itération method for Lipschitz pseudocontrations, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2359–2363.MathSciNetCrossRef
22.
Zurück zum Zitat Chidume C. E., Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol.1965 (2009), ISBN 978-1-84882-189-7. Chidume C. E., Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol.1965 (2009), ISBN 978-1-84882-189-7.
23.
Zurück zum Zitat L. Deng, On Chidume’s open question, J. Math. Appl. vol. 174 (1993), no. 2, 441–449.MathSciNet L. Deng, On Chidume’s open question, J. Math. Appl. vol. 174 (1993), no. 2, 441–449.MathSciNet
24.
Zurück zum Zitat Goebel, K., Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, inc., New York, 1984. Goebel, K., Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, inc., New York, 1984.
25.
Zurück zum Zitat G uler. O., On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, (1991) vol. 29, no. 2, pp. 403–419. G uler. O., On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, (1991) vol. 29, no. 2, pp. 403–419.
26.
Zurück zum Zitat Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, Journal of Approximation Theory, vol. 106 (2000), no. 2, pp. 226–240. Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, Journal of Approximation Theory, vol. 106 (2000), no. 2, pp. 226–240.
27.
Zurück zum Zitat Kamimura, S., Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAMJ. Optim., vol. 13 (2002), no. 3, pp. 938–945. Kamimura, S., Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAMJ. Optim., vol. 13 (2002), no. 3, pp. 938–945.
28.
29.
Zurück zum Zitat Kohsaka, F., Takahashi, W., Strong convergence of an iterative sequence for maximal monotone operator in Banach space,Abstr. Appl. Annal. 3 (2004) 239–349.MathSciNetCrossRef Kohsaka, F., Takahashi, W., Strong convergence of an iterative sequence for maximal monotone operator in Banach space,Abstr. Appl. Annal. 3 (2004) 239–349.MathSciNetCrossRef
30.
Zurück zum Zitat Liu, L., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., vol. 194 (1995), no. 1, pp. 114–125. Liu, L., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., vol. 194 (1995), no. 1, pp. 114–125.
31.
Zurück zum Zitat Martinet, B., regularization d’ inéquations variationelles par approximations successives, Revue Francaise d’informatique et de Recherche operationelle,4(1970), 154–159. Martinet, B., regularization d’ inéquations variationelles par approximations successives, Revue Francaise d’informatique et de Recherche operationelle,4(1970), 154–159.
32.
Zurück zum Zitat Mendy J.T., Sene M., Djitte N., Algorithm for zeros of maximal monotone mappings in classical Banach spaces, Int. J. Math. Anal., Vol. 11, 2017, no. 12, 551–570. Mendy J.T., Sene M., Djitte N., Algorithm for zeros of maximal monotone mappings in classical Banach spaces, Int. J. Math. Anal., Vol. 11, 2017, no. 12, 551–570.
33.
Zurück zum Zitat Moudafi, A., Alternating CQ-algorithm for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2004), no. 4, 809–818.MathSciNet Moudafi, A., Alternating CQ-algorithm for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2004), no. 4, 809–818.MathSciNet
34.
Zurück zum Zitat Moudafi, A., A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal. 79 (2003), 117–121.MathSciNetCrossRef Moudafi, A., A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal. 79 (2003), 117–121.MathSciNetCrossRef
35.
Zurück zum Zitat Moudafi, A., Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optim. 47 (2010), no. 2, 45–52.MathSciNetCrossRef Moudafi, A., Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optim. 47 (2010), no. 2, 45–52.MathSciNetCrossRef
36.
Zurück zum Zitat Moudafi, A., Thera, M., Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94 (1997), no. 2, 425–448.MathSciNetCrossRef Moudafi, A., Thera, M., Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94 (1997), no. 2, 425–448.MathSciNetCrossRef
37.
Zurück zum Zitat Pascali, D., Sburian, S., Nonlinear mappings of monotone type, Editura Academia Bucuresti, Romania, 1978. Pascali, D., Sburian, S., Nonlinear mappings of monotone type, Editura Academia Bucuresti, Romania, 1978.
38.
Zurück zum Zitat Qihou, L., The convergence theorems of the sequence of Ishikawa iterates for hemi-contractive mapping, J. Math. Anal. Appl., vol. 148 (1990), pp. 55–62.MathSciNetCrossRef Qihou, L., The convergence theorems of the sequence of Ishikawa iterates for hemi-contractive mapping, J. Math. Anal. Appl., vol. 148 (1990), pp. 55–62.MathSciNetCrossRef
39.
Zurück zum Zitat Reich, S., A weak convergence theorem for the alternating methods with Bergman distance, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in Lecture notes in pure and Appl. Math., vol. 178 (1996), Dekker, New York. pp. 313–318. Reich, S., A weak convergence theorem for the alternating methods with Bergman distance, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in Lecture notes in pure and Appl. Math., vol. 178 (1996), Dekker, New York. pp. 313–318.
40.
Zurück zum Zitat Reich, S., Iterative methods for accretive sets, Nonlinear Equations in Abstract Spaces, pp. 317–326, Academic Press, New York, 1978. Reich, S., Iterative methods for accretive sets, Nonlinear Equations in Abstract Spaces, pp. 317–326, Academic Press, New York, 1978.
41.
42.
Zurück zum Zitat Reich, S., Iterative methods for accretive sets in Banach Spaces, Academic Press, New York, 1978, 317–326. Reich, S., Iterative methods for accretive sets in Banach Spaces, Academic Press, New York, 1978, 317–326.
43.
Zurück zum Zitat Reich, S., Constructive techniques for accretive and monotone operators, Applied non-linear analysis, Academic Press, New York (1979), pp. 335–345. Reich, S., Constructive techniques for accretive and monotone operators, Applied non-linear analysis, Academic Press, New York (1979), pp. 335–345.
44.
Zurück zum Zitat Reich, S., and Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Journal of Nonlinear and Convex Analysis, vol. 10 (2009), no. 3, pp. 471–485. Reich, S., and Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Journal of Nonlinear and Convex Analysis, vol. 10 (2009), no. 3, pp. 471–485.
45.
Zurück zum Zitat Reich, S., and Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numerical Functional Analysis and Optimization, vol. 31 (2010), no. 1–3, pp. 22–44. Reich, S., and Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numerical Functional Analysis and Optimization, vol. 31 (2010), no. 1–3, pp. 22–44.
46.
Zurück zum Zitat Solodov, M, V., and Svaiter, B. F., Forcing strong convergence of proximal point iterations in a Hilbert space, Mathematical Programming, vol. 87 (2000), pp. 189–202. Solodov, M, V., and Svaiter, B. F., Forcing strong convergence of proximal point iterations in a Hilbert space, Mathematical Programming, vol. 87 (2000), pp. 189–202.
47.
Zurück zum Zitat Weng, X. L., Fixed point iteration for local striclty pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 113 (1991), no. 3, 727–731. Weng, X. L., Fixed point iteration for local striclty pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 113 (1991), no. 3, 727–731.
48.
Zurück zum Zitat Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000) 226–240.MathSciNetCrossRef Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000) 226–240.MathSciNetCrossRef
49.
Zurück zum Zitat William, K., Shahzad, N., Fixed point theory in distance spaces, Springer Verlag, 2014. William, K., Shahzad, N., Fixed point theory in distance spaces, Springer Verlag, 2014.
50.
Zurück zum Zitat Xiao, R., Chidume’s open problems and fixed point theorems, Xichuan Daxue Xuebao, vol. 35 (1998), no. 4, pp. 505–508. Xiao, R., Chidume’s open problems and fixed point theorems, Xichuan Daxue Xuebao, vol. 35 (1998), no. 4, pp. 505–508.
51.
Zurück zum Zitat Rockafellar, R. T., Monotone operator and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.MathSciNetCrossRef Rockafellar, R. T., Monotone operator and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.MathSciNetCrossRef
52.
53.
Zurück zum Zitat M. Sene, M. Ndiaye and N. Djitte, A new Krasnoselskii’s type algorithm for zeros of strongly monotone and Lipschitz mappings, CREAT. MATH. INFORM. Volume 31 (2022), No. 1, Pages 109–120.MathSciNetCrossRef M. Sene, M. Ndiaye and N. Djitte, A new Krasnoselskii’s type algorithm for zeros of strongly monotone and Lipschitz mappings, CREAT. MATH. INFORM. Volume 31 (2022), No. 1, Pages 109–120.MathSciNetCrossRef
54.
Zurück zum Zitat Xu, Z. B., Roach, G. F., Characteristic inequalities for uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl., vol 157 (1991), pp. 189–210.MathSciNetCrossRef Xu, Z. B., Roach, G. F., Characteristic inequalities for uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl., vol 157 (1991), pp. 189–210.MathSciNetCrossRef
55.
Zurück zum Zitat Xu, Z. B., Jiang, Y. L., Roach, G. F., A further necessary and sufficient condition for strong convergence of nonlinear contraction semigroups and of iteration methods for accretive operators in Banach spaces, Proc. Edinburgh Math. Soc., vol. 38 (1995), no. 2, pp. 1–12. Xu, Z. B., Jiang, Y. L., Roach, G. F., A further necessary and sufficient condition for strong convergence of nonlinear contraction semigroups and of iteration methods for accretive operators in Banach spaces, Proc. Edinburgh Math. Soc., vol. 38 (1995), no. 2, pp. 1–12.
56.
Zurück zum Zitat Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., Vol. 16 (1991), no. 12, pp. 1127–1138. Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., Vol. 16 (1991), no. 12, pp. 1127–1138.
57.
Zurück zum Zitat H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2002), no2, 240–256. H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2002), no2, 240–256.
58.
Zurück zum Zitat Xu, Y., Existence and convergence for fixed points of mappings of the asymptotically nonexpansive type, Nonlinear Anal., vol. 16 (1991), pp. 1139–1146.MathSciNetCrossRef Xu, Y., Existence and convergence for fixed points of mappings of the asymptotically nonexpansive type, Nonlinear Anal., vol. 16 (1991), pp. 1139–1146.MathSciNetCrossRef
59.
Zurück zum Zitat Zegeye, H. Strong convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl.,343 (2008) 663–671.MathSciNetCrossRef Zegeye, H. Strong convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl.,343 (2008) 663–671.MathSciNetCrossRef
60.
Zurück zum Zitat Zhou, H., Jia, Y., Approximating the zeros of accretive operators by the Ishikawa iteration process, Abstr. Appl. Anal. vol. 1 (1996), no. 2, 153–167.MathSciNetCrossRef Zhou, H., Jia, Y., Approximating the zeros of accretive operators by the Ishikawa iteration process, Abstr. Appl. Anal. vol. 1 (1996), no. 2, 153–167.MathSciNetCrossRef
61.
Zurück zum Zitat Zhu, L., Iteration solution of nonlinear equations involving m-accretive operators in Banach spaces, J. Math. Anal. Appl., vol. 188 (1994), 410–415.MathSciNetCrossRef Zhu, L., Iteration solution of nonlinear equations involving m-accretive operators in Banach spaces, J. Math. Anal. Appl., vol. 188 (1994), 410–415.MathSciNetCrossRef
Metadaten
Titel
A Perturbed Mann-Type Algorithm for Zeros of Maximal Monotone Mappings
verfasst von
Oumar Abdel Kader Aghrabatt
Aminata D. Diene
Ngalla Djitte
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-66222-5_7