Skip to main content
Erschienen in: Meccanica 6/2018

28.08.2017 | Novel Computational Approaches to Old and New Problems in Mechanics

A phase-field approach to conchoidal fracture

verfasst von: Carola Bilgen, Alena Kopaničáková, Rolf Krause, Kerstin Weinberg

Erschienen in: Meccanica | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Crack propagation involves the creation of new internal surfaces of a priori unknown paths. A first challenge for modeling and simulation of crack propagation is to identify the location of the crack initiation accurately, a second challenge is to follow the crack paths accurately. Phase-field models address both challenges in an elegant way, as they are able to represent arbitrary crack paths by means of a damage parameter. Moreover, they allow for the representation of complex crack patterns without changing the computational mesh via the damage parameter—which however comes at the cost of larger spatial systems to be solved. Phase-field methods have already been proven to predict complex fracture patterns in two and three dimensional numerical simulations for brittle fracture. In this paper, we consider phase-field models and their numerical simulation for conchoidal fracture. The main characteristic of conchoidal fracture is that the point of crack initiation is typically located inside of the body. We present phase-field approaches for conchoidal fracture for both, the linear-elastic case as well as the case of finite deformations. We moreover present and discuss efficient methods for the numerical simulation of the arising large scale non-linear systems. Here, we propose to use multigrid methods as solution technique, which leads to a solution method of optimal complexity. We demonstrate the accuracy and the robustness of our approach for two and three dimensional examples related to mussel shell like shape and faceted surfaces of fracture and show that our approach can accurately capture the specific details of cracked surfaces, such as the rippled breakages of conchoidal fracture. Moreover, we show that using our approach the arising systems can also be solved efficiently in parallel with excellent scaling behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126ADSMathSciNetCrossRef Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126ADSMathSciNetCrossRef
3.
Zurück zum Zitat Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma\)-convergence. Commun Pure Appl Math 43:999–1036MathSciNetCrossRefMATH Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\varGamma\)-convergence. Commun Pure Appl Math 43:999–1036MathSciNetCrossRefMATH
4.
Zurück zum Zitat Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2000) Mumps: a general purpose distributed memory sparse solver. In: International workshop on applied parallel computing. Springer, pp 121–130 Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2000) Mumps: a general purpose distributed memory sparse solver. In: International workshop on applied parallel computing. Springer, pp 121–130
5.
Zurück zum Zitat Balay S, Brown J, Buschelman K, Eijkhout V, Gropp W, Kaushik D, Knepley M, McInnes LC, Smith B, Zhang H (2012) PETSc users manual revision 3.3. Computer Science Division, Argonne National Laboratory, Argonne, IL Balay S, Brown J, Buschelman K, Eijkhout V, Gropp W, Kaushik D, Knepley M, McInnes LC, Smith B, Zhang H (2012) PETSc users manual revision 3.3. Computer Science Division, Argonne National Laboratory, Argonne, IL
6.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95MathSciNetCrossRefMATH Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95MathSciNetCrossRefMATH
7.
Zurück zum Zitat Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118ADSMathSciNetCrossRefMATH Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118ADSMathSciNetCrossRefMATH
8.
Zurück zum Zitat Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166ADSMathSciNetCrossRef Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166ADSMathSciNetCrossRef
9.
Zurück zum Zitat Bourdin B (2007) The variational formulation of brittle fracture: numerical implementation and extensions. In: Volume 5 of IUTAM symposium on discretization methods for evolving discontinuities, IUTAM bookseries, chapter 22. Springer, Dordrecht, pp 381–393 Bourdin B (2007) The variational formulation of brittle fracture: numerical implementation and extensions. In: Volume 5 of IUTAM symposium on discretization methods for evolving discontinuities, IUTAM bookseries, chapter 22. Springer, Dordrecht, pp 381–393
10.
11.
12.
13.
Zurück zum Zitat Gaston D, Newmann C, Hansen G, Lebrun-Grandie D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239:1768–1778CrossRef Gaston D, Newmann C, Hansen G, Lebrun-Grandie D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239:1768–1778CrossRef
14.
Zurück zum Zitat Geist GA, Romine CH (1988) Lu factorization algorithms on distributed-memory multiprocessor architectures. SIAM J Sci Stat Comput 9(4):639–649MathSciNetCrossRefMATH Geist GA, Romine CH (1988) Lu factorization algorithms on distributed-memory multiprocessor architectures. SIAM J Sci Stat Comput 9(4):639–649MathSciNetCrossRefMATH
16.
Zurück zum Zitat Guide MU (1998) The mathworks, vol 5. Inc, Natick, p 333 Guide MU (1998) The mathworks, vol 5. Inc, Natick, p 333
17.
Zurück zum Zitat Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105505ADSCrossRef Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105505ADSCrossRef
18.
Zurück zum Zitat Hesch C, Gil AJ, Ortigosa R, Dittmann M, Bilgen C, Betsch P, Franke M, Janz A, Weinberg K (2017) A framework for polyconvex large strain phase-field methods to fracture. Comput Methods Appl Mech Eng 317:649–683ADSMathSciNetCrossRef Hesch C, Gil AJ, Ortigosa R, Dittmann M, Bilgen C, Betsch P, Franke M, Janz A, Weinberg K (2017) A framework for polyconvex large strain phase-field methods to fracture. Comput Methods Appl Mech Eng 317:649–683ADSMathSciNetCrossRef
19.
Zurück zum Zitat Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99:906–924MathSciNetCrossRefMATH Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99:906–924MathSciNetCrossRefMATH
20.
Zurück zum Zitat Johnson KL (1987) Contact mechanics. Cambridge University Press, CambridgeMATH Johnson KL (1987) Contact mechanics. Cambridge University Press, CambridgeMATH
21.
Zurück zum Zitat Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 81:045501ADSCrossRef Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 81:045501ADSCrossRef
22.
Zurück zum Zitat Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRef Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRef
23.
24.
Zurück zum Zitat Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778ADSMathSciNetCrossRefMATH Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778ADSMathSciNetCrossRefMATH
25.
Zurück zum Zitat Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetCrossRefMATH Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetCrossRefMATH
26.
Zurück zum Zitat Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New YorkMATH Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New YorkMATH
27.
Zurück zum Zitat Müller R (2016) A benchmark problem for phase-field models of fracture. Presentation at the annual meeting of SPP 1748: reliable simulation techniques in solid mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis, Pavia Müller R (2016) A benchmark problem for phase-field models of fracture. Presentation at the annual meeting of SPP 1748: reliable simulation techniques in solid mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis, Pavia
28.
Zurück zum Zitat Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282CrossRefMATH Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282CrossRefMATH
30.
Zurück zum Zitat Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70(2):209–232CrossRef Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70(2):209–232CrossRef
31.
32.
Zurück zum Zitat Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with pardiso. Future Gener Comput Syst 20(3):475–487CrossRefMATH Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with pardiso. Future Gener Comput Syst 20(3):475–487CrossRefMATH
33.
Zurück zum Zitat Schmidt B, Leyendecker S (2009) \(\varGamma\)-convergence of variational integrators for constraint systems. J Nonlinear Sci 19:153–177ADSMathSciNetCrossRefMATH Schmidt B, Leyendecker S (2009) \(\varGamma\)-convergence of variational integrators for constraint systems. J Nonlinear Sci 19:153–177ADSMathSciNetCrossRefMATH
34.
Zurück zum Zitat Sneddon Ian N (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57MathSciNetCrossRefMATH Sneddon Ian N (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57MathSciNetCrossRefMATH
35.
Zurück zum Zitat Sukumar N, Srolovitz DJ, Baker TJ, Prevost J-H (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Methods Eng 56:2015–2037CrossRefMATH Sukumar N, Srolovitz DJ, Baker TJ, Prevost J-H (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Methods Eng 56:2015–2037CrossRefMATH
37.
Zurück zum Zitat Wallner H (1939) Linienstrukturen an Bruchflächen. Zeitschrift für Physik 114:368–378ADSCrossRef Wallner H (1939) Linienstrukturen an Bruchflächen. Zeitschrift für Physik 114:368–378ADSCrossRef
38.
Zurück zum Zitat Weinberg K, Dally T, Schuss S, Werner M, Bilgen C (2016) Modeling and numerical simulation of crack growth and damage with a phase field approach. GAMM-Mitt 39:55–77MathSciNetCrossRef Weinberg K, Dally T, Schuss S, Werner M, Bilgen C (2016) Modeling and numerical simulation of crack growth and damage with a phase field approach. GAMM-Mitt 39:55–77MathSciNetCrossRef
39.
40.
Zurück zum Zitat Xu X-P, Needlemann A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434ADSCrossRefMATH Xu X-P, Needlemann A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434ADSCrossRefMATH
Metadaten
Titel
A phase-field approach to conchoidal fracture
verfasst von
Carola Bilgen
Alena Kopaničáková
Rolf Krause
Kerstin Weinberg
Publikationsdatum
28.08.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 6/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0740-z

Weitere Artikel der Ausgabe 6/2018

Meccanica 6/2018 Zur Ausgabe

Novel Computational Approaches to Old and New Problems in Mechanics

Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach

Novel Computational Approaches to Old and New Problems in Mechanics

Numerical solution of smooth and rough contact problems

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.