Skip to main content
Erschienen in: Meccanica 10/2018

27.02.2018

A phenomenological description of shape memory alloy transformation induced plasticity

verfasst von: Sergio de A. Oliveira, Vanderson M. Dornelas, Marcelo A. Savi, Pedro Manuel C. L. Pacheco, Alberto Paiva

Erschienen in: Meccanica | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transformation induced plasticity is defined as the plastic flow arising from solid state phase transformation processes involving volume and/or shape changes without overlapping the yield surface. This phenomenon occurs in shape memory alloys (SMAs) having significant influence over their macroscopic thermomechanical behavior. This contribution presents a macroscopic three-dimensional constitutive model to describe the thermomechanical behavior of SMAs including classical and transformation induced plasticity. Comparisons between numerical and experimental results attest the model capability to capture plastic phenomena. Both uniaxial and multiaxial simulations are carried out.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Auricchio F, Marfia S, Sacco E (2002) Modeling of SMA materials: training and two way memory effects. Comput Struct 81(24):2301–2317 Auricchio F, Marfia S, Sacco E (2002) Modeling of SMA materials: training and two way memory effects. Comput Struct 81(24):2301–2317
2.
Zurück zum Zitat Chemisky Y, Chatzigeorgiou G, Kumar P, Lagoudas DC (2013) A constitutive model for cyclic actuation of high-temperature shape memory alloys. Mech Mater 68:120–136CrossRef Chemisky Y, Chatzigeorgiou G, Kumar P, Lagoudas DC (2013) A constitutive model for cyclic actuation of high-temperature shape memory alloys. Mech Mater 68:120–136CrossRef
3.
Zurück zum Zitat Cherkaoui M, Berveiller M, Sabar H (1998) Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plast 14(7):597–626CrossRefMATH Cherkaoui M, Berveiller M, Sabar H (1998) Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals. Int J Plast 14(7):597–626CrossRefMATH
4.
Zurück zum Zitat Cissé C, Zaki W, Gu X, Zineb TB (2017) A nonlinear 3D model for iron-based shape memory alloys considering different thermomechanical properties for austenite and martensite and coupling between transformation and plasticity. Mech Mater 107:1–21CrossRef Cissé C, Zaki W, Gu X, Zineb TB (2017) A nonlinear 3D model for iron-based shape memory alloys considering different thermomechanical properties for austenite and martensite and coupling between transformation and plasticity. Mech Mater 107:1–21CrossRef
5.
Zurück zum Zitat Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597–613CrossRefADS Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597–613CrossRefADS
6.
Zurück zum Zitat Entchev PB, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response. Mech Mater 36(9):893–913CrossRef Entchev PB, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response. Mech Mater 36(9):893–913CrossRef
7.
Zurück zum Zitat Fischer FD, Oberaigner ER, Tanaka K, Nishimura F (1998) Transformation induced plasticity revised an update formulation. Int J Solids Struct 35(18):2209–2227CrossRefMATH Fischer FD, Oberaigner ER, Tanaka K, Nishimura F (1998) Transformation induced plasticity revised an update formulation. Int J Solids Struct 35(18):2209–2227CrossRefMATH
8.
Zurück zum Zitat Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T (2000) A new view on transformation induced plasticity. Int J Plast 16(7):723–748CrossRefMATH Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T (2000) A new view on transformation induced plasticity. Int J Plast 16(7):723–748CrossRefMATH
9.
Zurück zum Zitat Freed Y, Aboudi J (2009) Thermomechanically coupled micromechanical analysis of shape memory alloy composites undergoing transformation induced plasticity. J Intell Mater Syst Struct 20(1):23–38CrossRef Freed Y, Aboudi J (2009) Thermomechanically coupled micromechanical analysis of shape memory alloy composites undergoing transformation induced plasticity. J Intell Mater Syst Struct 20(1):23–38CrossRef
10.
Zurück zum Zitat Ganghoffer JF, Simonsson K (1998) A micromechanical model of the martensitic transformation. Mech Mater 27(3):125–144CrossRef Ganghoffer JF, Simonsson K (1998) A micromechanical model of the martensitic transformation. Mech Mater 27(3):125–144CrossRef
11.
Zurück zum Zitat Garcia MS (2015) Experimental analysis of the thermomechanical behavior of shape memory alloys. Ph.D. Thesis, COPPE/UFRJ—Department of Mechanical Engineering (in Portuguese) Garcia MS (2015) Experimental analysis of the thermomechanical behavior of shape memory alloys. Ph.D. Thesis, COPPE/UFRJ—Department of Mechanical Engineering (in Portuguese)
12.
Zurück zum Zitat Gautier E, Zhang XM, Simon A (1989) Role of internal stress state on transformation induced plasticity and transformation mechanisms during the progress of stress induced phase transformation. In: Beck G, Denis S, Simon A (eds) International conference on residual stresses—ICRS2. Elsevier Applied Science, London, pp 777–783 Gautier E, Zhang XM, Simon A (1989) Role of internal stress state on transformation induced plasticity and transformation mechanisms during the progress of stress induced phase transformation. In: Beck G, Denis S, Simon A (eds) International conference on residual stresses—ICRS2. Elsevier Applied Science, London, pp 777–783
13.
Zurück zum Zitat Gautier E (1998) Déformation de transformation et plasticité de transformation. École d’été MH2M, Méthodes d’Homogénéisation en Mécanique des Matériaux, La Londe Les Maures (Var, France) Gautier E (1998) Déformation de transformation et plasticité de transformation. École d’été MH2M, Méthodes d’Homogénéisation en Mécanique des Matériaux, La Londe Les Maures (Var, France)
14.
Zurück zum Zitat Greenwood GW, Johnson RH (1965) The deformation of metals under small stresses during phase transformation. Proc R Soc 283(1394):403–422CrossRef Greenwood GW, Johnson RH (1965) The deformation of metals under small stresses during phase transformation. Proc R Soc 283(1394):403–422CrossRef
15.
Zurück zum Zitat Kang G, Kan Q, Qian L, Liu Y (2009) Ratchetting deformation of super-elastic and shape memory NiTi alloys. Mech Mater 41(2):139–153CrossRef Kang G, Kan Q, Qian L, Liu Y (2009) Ratchetting deformation of super-elastic and shape memory NiTi alloys. Mech Mater 41(2):139–153CrossRef
16.
Zurück zum Zitat Lagoudas DC, Entchev PB, Kumar PK (2003) Thermomechanical characterization of SMA actuators under cyclic loading. In: Proceedings of IMECE’03, ASME international mechanical engineering congress Lagoudas DC, Entchev PB, Kumar PK (2003) Thermomechanical characterization of SMA actuators under cyclic loading. In: Proceedings of IMECE’03, ASME international mechanical engineering congress
17.
Zurück zum Zitat Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Department of Aerospace Engineering Texas A&M University. Springer Science Business Media, LLC, BerlinMATH Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Department of Aerospace Engineering Texas A&M University. Springer Science Business Media, LLC, BerlinMATH
18.
Zurück zum Zitat Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36(9):865–892CrossRef Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36(9):865–892CrossRef
19.
Zurück zum Zitat Leblond J (1989) Mathematical modeling of transformation plasticity in steels II: coupling with strain hardening phenomena. Int J Plast 5(6):573–591CrossRef Leblond J (1989) Mathematical modeling of transformation plasticity in steels II: coupling with strain hardening phenomena. Int J Plast 5(6):573–591CrossRef
20.
Zurück zum Zitat Leblond JB, Devaux J, Devaux JC (1989) Mathematical modeling of transformation plasticity in steels I: case of ideal-plastic phases. Int J Plast 5(6):551–572CrossRef Leblond JB, Devaux J, Devaux JC (1989) Mathematical modeling of transformation plasticity in steels I: case of ideal-plastic phases. Int J Plast 5(6):551–572CrossRef
21.
Zurück zum Zitat Lemaitre J, Charboche JL (1990) Mechanics of solid materials. Cambridge University Press, CambridgeCrossRef Lemaitre J, Charboche JL (1990) Mechanics of solid materials. Cambridge University Press, CambridgeCrossRef
22.
Zurück zum Zitat Magee CL (1966) Transformation kinetics, microplasticity and aging of martensite in Fe–31 Ni. Ph.D. Thesis, Carnegie Institute of Technology, Pittsburg, PA Magee CL (1966) Transformation kinetics, microplasticity and aging of martensite in Fe–31 Ni. Ph.D. Thesis, Carnegie Institute of Technology, Pittsburg, PA
23.
Zurück zum Zitat Marketz F, Fischer FD (1994) A micromechanical study on the coupling effect between microplastic deformation and martensitic transformation. Comput Mater Sci 3(2):307–325CrossRef Marketz F, Fischer FD (1994) A micromechanical study on the coupling effect between microplastic deformation and martensitic transformation. Comput Mater Sci 3(2):307–325CrossRef
24.
Zurück zum Zitat Oliveira SA, Savi MA, Zouain N (2016) A three-dimensional description of shape memory alloy thermomechanical behavior including plasticity. J Braz Soc Mech Sci Eng 38(5):1451–1472CrossRef Oliveira SA, Savi MA, Zouain N (2016) A three-dimensional description of shape memory alloy thermomechanical behavior including plasticity. J Braz Soc Mech Sci Eng 38(5):1451–1472CrossRef
26.
Zurück zum Zitat Paiva A, Savi MA, Braga AMB, Pacheco PMCL (2005) A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int J Solids Struct 42(11-12):3439–3457CrossRefMATH Paiva A, Savi MA, Braga AMB, Pacheco PMCL (2005) A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int J Solids Struct 42(11-12):3439–3457CrossRefMATH
27.
Zurück zum Zitat Paradis A, Terriault P, Brailovski V (2009) Modeling of residual strain accumulation of NiTi shape memory alloys under uniaxial cyclic loading. Comput Mater Sci 47(2):373–383CrossRef Paradis A, Terriault P, Brailovski V (2009) Modeling of residual strain accumulation of NiTi shape memory alloys under uniaxial cyclic loading. Comput Mater Sci 47(2):373–383CrossRef
28.
Zurück zum Zitat Piecyska E, Gadaj S, Nowacki WK, Hoshio K, Machino Y, Tobushi H (2005) Characteristics of energy storage and dissipation in TiNi shape memory alloys. Sci Technol Adv Mater 6(8):889–894CrossRef Piecyska E, Gadaj S, Nowacki WK, Hoshio K, Machino Y, Tobushi H (2005) Characteristics of energy storage and dissipation in TiNi shape memory alloys. Sci Technol Adv Mater 6(8):889–894CrossRef
29.
Zurück zum Zitat Sakhaei AH, Lim K (2016) Transformation induced plasticity in high temperature shape memory alloys: a one dimensional continuum model. Continuum Mech Thermodyn 28(4):1039–1047MathSciNetCrossRefMATHADS Sakhaei AH, Lim K (2016) Transformation induced plasticity in high temperature shape memory alloys: a one dimensional continuum model. Continuum Mech Thermodyn 28(4):1039–1047MathSciNetCrossRefMATHADS
30.
Zurück zum Zitat Savi MA, Paiva A (2005) Describing internal subloops due to incomplete phase transformations in shape memory alloys. Arch Appl Mech 74(9):637–647CrossRefMATH Savi MA, Paiva A (2005) Describing internal subloops due to incomplete phase transformations in shape memory alloys. Arch Appl Mech 74(9):637–647CrossRefMATH
31.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, BerlinMATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, BerlinMATH
32.
Zurück zum Zitat Sittner P, Hara Y, Tokuda M (1995) Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall Mater Trans 26(11):2923–2935CrossRef Sittner P, Hara Y, Tokuda M (1995) Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall Mater Trans 26(11):2923–2935CrossRef
33.
Zurück zum Zitat Stringfellow RG, Parks DM, Olson GB (1992) A constitutive model for transformation plasticity accompanying strain-induced martensitic transformation in metastable austenitic steels. Acta Metall 40(7):1703–1716CrossRef Stringfellow RG, Parks DM, Olson GB (1992) A constitutive model for transformation plasticity accompanying strain-induced martensitic transformation in metastable austenitic steels. Acta Metall 40(7):1703–1716CrossRef
34.
Zurück zum Zitat Taleb L, Cavallo N, Waeckel F (2001) Experimental analysis of transformation plasticity. Int J Plast 17(1):1–20CrossRef Taleb L, Cavallo N, Waeckel F (2001) Experimental analysis of transformation plasticity. Int J Plast 17(1):1–20CrossRef
35.
Zurück zum Zitat Taleb L, Sidoroff F (2003) A micromechanical modeling of the Greenwood-Johnson mechanism in transformation induced plasticity. Int J Plast 19(10):1821–1842CrossRefMATH Taleb L, Sidoroff F (2003) A micromechanical modeling of the Greenwood-Johnson mechanism in transformation induced plasticity. Int J Plast 19(10):1821–1842CrossRefMATH
36.
Zurück zum Zitat Tanaka K, Sato Y (1985) A mechanical view of transformation-induced plasticity. Ing Arch 55:147–155CrossRef Tanaka K, Sato Y (1985) A mechanical view of transformation-induced plasticity. Ing Arch 55:147–155CrossRef
37.
Zurück zum Zitat Tanaka K, Nishimura F, Hayashi T, Tobushi H, Lexcellent C (1995) Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech Mater 19(4):281–292CrossRef Tanaka K, Nishimura F, Hayashi T, Tobushi H, Lexcellent C (1995) Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech Mater 19(4):281–292CrossRef
38.
Zurück zum Zitat Tobushi H, Iwanaga H, Tanaka K, Hori T, Sawada T (1991) Deformation behavior of Ni–Ti shape memory alloy subjected to variable stress and temperature. Continuum Mech Thermodyn 3(2):79–93CrossRefADS Tobushi H, Iwanaga H, Tanaka K, Hori T, Sawada T (1991) Deformation behavior of Ni–Ti shape memory alloy subjected to variable stress and temperature. Continuum Mech Thermodyn 3(2):79–93CrossRefADS
39.
Zurück zum Zitat Yu C, Kang G, Kan Q (2015) A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. J Mech Phys Solids 82:97–136MathSciNetCrossRefADS Yu C, Kang G, Kan Q (2015) A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. J Mech Phys Solids 82:97–136MathSciNetCrossRefADS
40.
Zurück zum Zitat Yu C, Kang G, Kan Q (2014) A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: one-dimensional model. Mech Mater 78:1–10CrossRefADS Yu C, Kang G, Kan Q (2014) A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: one-dimensional model. Mech Mater 78:1–10CrossRefADS
41.
Zurück zum Zitat Yu C, Kang G, Kan Q, Song D (2012) A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys. Int J Plast 44:161–191CrossRef Yu C, Kang G, Kan Q, Song D (2012) A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys. Int J Plast 44:161–191CrossRef
42.
Zurück zum Zitat Zaki W, Mounmi Z (2007) 3D model of the cyclic thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55(11):2427–2454CrossRefMATHADS Zaki W, Mounmi Z (2007) 3D model of the cyclic thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55(11):2427–2454CrossRefMATHADS
43.
Zurück zum Zitat Zhang X, Yan X, Xie H, Sun R (2014) Modeling evolutions of plastic strain, maximum transformation strain and transformation temperatures in SMA under superelastic cycling. Comput Mater Sci 81:113–122CrossRef Zhang X, Yan X, Xie H, Sun R (2014) Modeling evolutions of plastic strain, maximum transformation strain and transformation temperatures in SMA under superelastic cycling. Comput Mater Sci 81:113–122CrossRef
44.
Zurück zum Zitat Zwigl P, Dunand DC (1997) A nonlinear model for internal stress superelasticity. Acta Mater 45(12):5285–5294CrossRef Zwigl P, Dunand DC (1997) A nonlinear model for internal stress superelasticity. Acta Mater 45(12):5285–5294CrossRef
Metadaten
Titel
A phenomenological description of shape memory alloy transformation induced plasticity
verfasst von
Sergio de A. Oliveira
Vanderson M. Dornelas
Marcelo A. Savi
Pedro Manuel C. L. Pacheco
Alberto Paiva
Publikationsdatum
27.02.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 10/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0836-0

Weitere Artikel der Ausgabe 10/2018

Meccanica 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.