Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.08.2017 | Original Article | Ausgabe 6/2019

Neural Computing and Applications 6/2019

A piecewise weight update rule for a supervised training of cortical algorithms

Zeitschrift:
Neural Computing and Applications > Ausgabe 6/2019
Autoren:
Nadine Hajj, Mariette Awad

Abstract

First introduced by MountCastle, cortical algorithms (CA) are positioned to outperform artificial neural networks second generations due to their ability to hierarchically store sequences of patterns in an invariant form. Despite their closer resemblance to the human cortex and their hypothetical improved performance, CA adoption as a deep learning approach remains limited in energy aware environments due to their high computational training complexity. Motivated to reduce CA supervised training complexity in limited hardware resources environments, we propose in this paper a piecewise linear or polygonal weight update rule for a supervised training of CA based on a linearization of the exponential function. As shown by our simulation results on 12 publicly available databases and our developed error-bound proofs, the proposed rule reduces CA training time by a factor of 3 at the expense of a 0.5% degradation in accuracy. A simpler approximation relying on the asymptotes at 0 and infinity reduces training time by a factor of 3.5 coupled with a reduction of 1.49% in accuracy.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2019

Neural Computing and Applications 6/2019 Zur Ausgabe

Premium Partner

    Bildnachweise