Skip to main content
Erschienen in: Microsystem Technologies 8/2022

06.07.2022 | Technical Paper

A piezoelectric energy harvester using an arc-shaped piezoelectric cantilever beam array

verfasst von: Jiang Ding, Mengen Lu, Aiping Deng, Saihua Jiang

Erschienen in: Microsystem Technologies | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The piezoelectric energy harvester (PEH) has shown important practical value in numerous fields including, but not limited to communication, transportation, and military industrialization. However, the efficiency of piezoelectric energy harvesting is greatly limited due to its narrow frequency bandwidth. To harvest the vibration energy from a wider frequency range, this paper proposes a variant power generator array that is designed by using an arc-shaped piezoelectric cantilever beam (APCB) array. Five APCBs with different radii are arrayed parallel to each other with the energy harvesting circuit being connected in continuum by a rectifier bridge. The mathematical model and values of the APCB are depicted in this paper so to elucidate its low stiffness characteristic. The finite element analysis of the APCB is similarly recorded and the simulation result indicated that the APCB have better output performance than the corresponding flat-plat piezoelectric cantilever beam (FPCB). In addition, output voltage of the APCB can be increased while increasing the resonance frequency by increasing the width. Finally, the result of finite element simulation shows that the piezoelectric energy harvester using five APCBs arrayed in parallel series can be 14 times more efficient than that of the PEH with single APCB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Basset P, Galayko D, Cottone F et al (2014) Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. J Micromech Microeng 24(3):035001CrossRef Basset P, Galayko D, Cottone F et al (2014) Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. J Micromech Microeng 24(3):035001CrossRef
Zurück zum Zitat Chen XY, Zhang XH, Wang L et al (2021) An arch-linear composed beam piezoelectric energy harvester with magnetic coupling: design, modeling and dynamic analysis. J Sound Vib 513:116394CrossRef Chen XY, Zhang XH, Wang L et al (2021) An arch-linear composed beam piezoelectric energy harvester with magnetic coupling: design, modeling and dynamic analysis. J Sound Vib 513:116394CrossRef
Zurück zum Zitat Deng GQ, Chen ZS, Tao LM et al (2009) Research on vibration energy harvesting based on piezoelectric cantilever beams. Piezoelectr Acoustoopt 31(6):939–942 Deng GQ, Chen ZS, Tao LM et al (2009) Research on vibration energy harvesting based on piezoelectric cantilever beams. Piezoelectr Acoustoopt 31(6):939–942
Zurück zum Zitat Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef
Zurück zum Zitat Ezzat MA, El-Bary AA (2013) MHD free convection flow with fractional heat conduction law. Magnetohydrodynamics 48(4):587–606 Ezzat MA, El-Bary AA (2013) MHD free convection flow with fractional heat conduction law. Magnetohydrodynamics 48(4):587–606
Zurück zum Zitat Ezzat MA, El-Bary AA, Ezzat S (2011) Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers Manag 52(2):934–945CrossRef Ezzat MA, El-Bary AA, Ezzat S (2011) Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers Manag 52(2):934–945CrossRef
Zurück zum Zitat Ezzat MA, El-Bary AA (2016) Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int J Appl Electrom 50(4):549–567 Ezzat MA, El-Bary AA (2016) Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int J Appl Electrom 50(4):549–567
Zurück zum Zitat Fan KQ, Cai ML, Wang F et al (2019) A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting. Energy Convers Manag 198:111820CrossRef Fan KQ, Cai ML, Wang F et al (2019) A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting. Energy Convers Manag 198:111820CrossRef
Zurück zum Zitat Firoozy P, Khadem SE, Pourkiaee SM (2017) Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int J Eng Sci 111:113–133MathSciNetCrossRef Firoozy P, Khadem SE, Pourkiaee SM (2017) Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int J Eng Sci 111:113–133MathSciNetCrossRef
Zurück zum Zitat Green PL, Papatheou E, Sims ND (2013) Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J Intell Mater Syst Struct 24(12):1494–1505CrossRef Green PL, Papatheou E, Sims ND (2013) Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J Intell Mater Syst Struct 24(12):1494–1505CrossRef
Zurück zum Zitat Kan JW, Fu JW, Wang SY et al (2017) Study on a piezo-disk energy harvester excited by rotary magnets. Energy 122:62–69CrossRef Kan JW, Fu JW, Wang SY et al (2017) Study on a piezo-disk energy harvester excited by rotary magnets. Energy 122:62–69CrossRef
Zurück zum Zitat Karami A, Galako D, Basset P (2017) A novel characterization method for accurate lumped parameter modeling of electret electrostatic vibration energy harvesters. IEEE Electron Device Lett 38(5):665–668CrossRef Karami A, Galako D, Basset P (2017) A novel characterization method for accurate lumped parameter modeling of electret electrostatic vibration energy harvesters. IEEE Electron Device Lett 38(5):665–668CrossRef
Zurück zum Zitat Khamin AK, Lotfy K, El-Bary AA et al (2020) Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex 31(6):2499–2513MathSciNetCrossRef Khamin AK, Lotfy K, El-Bary AA et al (2020) Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex 31(6):2499–2513MathSciNetCrossRef
Zurück zum Zitat Kim S, Clark WW, Wang QM (2003) Piezoelectric energy harvesting using a diaphragm structure. In: 2003 smart structures and materials 2003 conference, SPIE, pp 307–318 Kim S, Clark WW, Wang QM (2003) Piezoelectric energy harvesting using a diaphragm structure. In: 2003 smart structures and materials 2003 conference, SPIE, pp 307–318
Zurück zum Zitat Kundu S, Nemade HB (2016) Piezoelectric vibration energy harvester with tapered substrate thickness for uniform stress. Microsyst Technol 27(1):105–113CrossRef Kundu S, Nemade HB (2016) Piezoelectric vibration energy harvester with tapered substrate thickness for uniform stress. Microsyst Technol 27(1):105–113CrossRef
Zurück zum Zitat Mitcheson PD, Miao P, Stark BH et al (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A 115(2–3):523–529CrossRef Mitcheson PD, Miao P, Stark BH et al (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A 115(2–3):523–529CrossRef
Zurück zum Zitat Ramlan R, Brennan MJ, Mace BR et al (2010) Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn 59(4):545–558CrossRef Ramlan R, Brennan MJ, Mace BR et al (2010) Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn 59(4):545–558CrossRef
Zurück zum Zitat Salim M, Dayou J, Aljibori HS et al (2016) A low frequency hybrid harvester with ring magnets. Sustain Energy Technol Assess 13:23–30 Salim M, Dayou J, Aljibori HS et al (2016) A low frequency hybrid harvester with ring magnets. Sustain Energy Technol Assess 13:23–30
Zurück zum Zitat Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. Mechatronics 16(9):523–531CrossRef Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. Mechatronics 16(9):523–531CrossRef
Zurück zum Zitat Si H, Dong J, Chen L et al (2015) Study of the ambient vibration energy harvesting based on piezoelectric effect. Int J Nanosci 14:1460017 CrossRef Si H, Dong J, Chen L et al (2015) Study of the ambient vibration energy harvesting based on piezoelectric effect. Int J Nanosci 14:1460017 CrossRef
Zurück zum Zitat Sodano HA, Park G, Leo DJ et al (2003) Use of piezoelectric energy harvesting devices for charging batteries. In: 2003 smart structures and materials 2003 conference, SPIE, pp 101–108 Sodano HA, Park G, Leo DJ et al (2003) Use of piezoelectric energy harvesting devices for charging batteries. In: 2003 smart structures and materials 2003 conference, SPIE, pp 101–108
Zurück zum Zitat Su WJ, Zu J (2013) An innovative tri-directional broadband piezoelectric energy harvester. Appl Phys Lett 103(20):203901CrossRef Su WJ, Zu J (2013) An innovative tri-directional broadband piezoelectric energy harvester. Appl Phys Lett 103(20):203901CrossRef
Zurück zum Zitat Tao K, Lye SW, Miao JM et al (2015) Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectron Eng 135:32–37CrossRef Tao K, Lye SW, Miao JM et al (2015) Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectron Eng 135:32–37CrossRef
Zurück zum Zitat Tan T, Hu XY, Yan ZM et al (2019) Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy 187:115915CrossRef Tan T, Hu XY, Yan ZM et al (2019) Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy 187:115915CrossRef
Zurück zum Zitat Wang L, Quan QQ, Xue KL et al (2018) Development of a three-DOF piezoelectric actuator using a thin cross-beam vibrator. Int J Mech Sci 149:54–61CrossRef Wang L, Quan QQ, Xue KL et al (2018) Development of a three-DOF piezoelectric actuator using a thin cross-beam vibrator. Int J Mech Sci 149:54–61CrossRef
Zurück zum Zitat Xiong YZ, Song F, Leng XH (2020) A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate. Microsyst Technol 26(3):801–810CrossRef Xiong YZ, Song F, Leng XH (2020) A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate. Microsyst Technol 26(3):801–810CrossRef
Zurück zum Zitat Xu J, Tang J (2015) Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Appl Phys Lett 107(21):213902CrossRef Xu J, Tang J (2015) Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Appl Phys Lett 107(21):213902CrossRef
Zurück zum Zitat Yang ZB, Wang YQ, Zuo L et al (2017) Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Convers Manag 148:260–266CrossRef Yang ZB, Wang YQ, Zuo L et al (2017) Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Convers Manag 148:260–266CrossRef
Zurück zum Zitat Youssef HM, El-Bary AA (2009) Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theoriesstate space approach. J Therm Stresses 32(12):1293–1310CrossRef Youssef HM, El-Bary AA (2009) Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theoriesstate space approach. J Therm Stresses 32(12):1293–1310CrossRef
Zurück zum Zitat Yu LD, Tang LH, Yang TJ (2019) Experimental investigation of a passive self-tuning resonator based on a beam-slider structure. Acta Mech Sin 35(5):1079–1092CrossRef Yu LD, Tang LH, Yang TJ (2019) Experimental investigation of a passive self-tuning resonator based on a beam-slider structure. Acta Mech Sin 35(5):1079–1092CrossRef
Zurück zum Zitat Zhao LC, Zou HX, Gao QH et al (2019) Magnetically modulated orbit for human motion energy harvesting. Appl Phys Lett 115(26):263902CrossRef Zhao LC, Zou HX, Gao QH et al (2019) Magnetically modulated orbit for human motion energy harvesting. Appl Phys Lett 115(26):263902CrossRef
Zurück zum Zitat Zhou S, Cao J, Erturk A et al (2013) Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl Phys Lett 102(17):101301CrossRef Zhou S, Cao J, Erturk A et al (2013) Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl Phys Lett 102(17):101301CrossRef
Metadaten
Titel
A piezoelectric energy harvester using an arc-shaped piezoelectric cantilever beam array
verfasst von
Jiang Ding
Mengen Lu
Aiping Deng
Saihua Jiang
Publikationsdatum
06.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2022
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-022-05338-0

Weitere Artikel der Ausgabe 8/2022

Microsystem Technologies 8/2022 Zur Ausgabe

Neuer Inhalt