The Multi-mission Instrument Processing Lab (MIPL) is responsible for developing much of the ground support software for the Mars missions. The MIPL pipeline is used to generate several products from a one mega-pixel image within a 30 min time constraint. In future missions, this time constraint will be decreased to five minutes for 20 mega-pixels images, requiring a minimum 120 times speed-up from current operational hardware and software. Moreover, any changes to the current software must preserve the source code’s maintainability and portability for future missions. Therefore, the surface normal generation software has been implemented on a Graphical Processing Unit (GPU) through the use of the NVidia CUDA Toolkit and Hemi Library to allow for minimum code complexity. Several changes have been made to Hemi Library to allow for additional optimizations of the GPU code. In addition, several challenges to developing a parallelized GPU implementation of the surface normal generation algorithm are explored, while both tested and prospective solutions to these problems are described.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Alexander, D.A., Deen, R.G., Andres, P.M., Zamani, P., Mortensen, H.B., Chen, A.C., Cayanan, M.K., Hall, J.R., Klochko, V.S., Pariser, O., Stanley, C.L., Thompson, C.K., Yagi, G.M.: Processing of mars exploration rover imagery for science and operations planning. J. Geophys. Res. Planets
111 (2006)
2.
Alexander, D.A., Deen, R.G.: Mars Science Laboratory Project Software Interface Specification (SIS); Camera & LIBS Experiment Data Record (EDR) and Reduced Data Record (RDR) Data Products, version 3.0. (NASA Planetary Data System)
3.
Deen, R.G., Lorre, J.J.: Seeing in three dimensions: correlation and triangulation of mars exploration rover imagery. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 911–916 (2005)
Wu, J., Deng, L., Jeon, G., Jeong, J.: GPU-parallel interpolation using the edge-direction based normal vector method for terrain triangular mesh. J. Real-Time Image Prola. 1–10 (2016)
8.
Orts-Escolano, S., Morell, V., Garcia-Rodriguez, J., Cazorla, M., Fisher, R.B.: Real-time 3d semi-local surface patch extraction using GPGPU. J. Real-Time Image Proc.
10, 647–666 (2015)
CrossRef
9.
Cohen, J., Molemaker, M.J.: A fast double precision CFD code using CUDA. In: Recent Advances and Future Directions, Parallel Computational Fluid Dynamics, pp. 414–429 (2009)
10.
Jang, B., Schaa, D., Mistry, P., Kaeli, D.: Exploiting memory access patterns to improve memory performance in data-parallel architectures. IEEE Trans. Parallel Distrib. Syst.
22, 105–118 (2011)
CrossRef
11.
Rösler, U.: A limit theorem for quicksort. Informatique théorique et applications
25, 85–100 (1991)
MathSciNetMATH
Über dieses Kapitel
Titel
A Portable and Unified CPU/GPU Parallel Implementation of Surface Normal Generation Algorithm from 3D Terrain Data
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis. Jetzt gratis downloaden!