Skip to main content
Erschienen in: The Journal of Supercomputing 12/2019

07.09.2019

A predictor–corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes

verfasst von: Mahdi Saedshoar Heris, Mohammad Javidi

Erschienen in: The Journal of Supercomputing | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tempered fractional derivatives and the corresponding tempered fractional differential equations have played a key role in physical science. In this paper, for solving the tempered fractional ordinary differential equation, the predictor–corrector (PC) methods with uniform and non-uniform meshes of Deng et al. (Numer Algorithms 74(3):717–754, 2017) are developed, by using the piecewise quadratic interpolation polynomial. The error bounds of proposed predictor–corrector schemes with uniform and equidistributing meshes are obtained. We proved that the presented numerical method has a higher-order convergence order \(O(h^3)\). Also, some numerical examples are constructed to demonstrate the efficacy and usefulness of the numerical methods. Finally, the results of PC schemes with uniform and non-uniform given in Deng et al. (2017) and presented schemes (improved PC with uniform and non-uniform meshes) are compared for different values of parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Butzer PL, Westphal U (2000) An introduction to fractional calculus. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 1–85MATH Butzer PL, Westphal U (2000) An introduction to fractional calculus. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 1–85MATH
2.
Zurück zum Zitat Heymans N, Podlubny I (2006) Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol Acta 45(5):765–771 Heymans N, Podlubny I (2006) Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol Acta 45(5):765–771
3.
Zurück zum Zitat Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, LondonMATH Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, LondonMATH
4.
Zurück zum Zitat Ali Z, Kumam P, Shah K, Zada A (2019) Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations. Mathematics 7(4):341 Ali Z, Kumam P, Shah K, Zada A (2019) Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations. Mathematics 7(4):341
5.
Zurück zum Zitat Shah R, Khan H, Arif M, Kumam P (2019) Application of Laplace–Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 21(4):335MathSciNet Shah R, Khan H, Arif M, Kumam P (2019) Application of Laplace–Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 21(4):335MathSciNet
6.
Zurück zum Zitat Saoudi K, Agarwal P, Kumam P, Ghanmi A, Thounthong P (2018) The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative. Adv Differ Equ 2018(1):263MathSciNetMATH Saoudi K, Agarwal P, Kumam P, Ghanmi A, Thounthong P (2018) The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative. Adv Differ Equ 2018(1):263MathSciNetMATH
7.
Zurück zum Zitat Chaipunya P, Kumam P (2015) Fixed point theorems for cyclic operators with application in fractional integral inclusions with delays. Conference Publications Chaipunya P, Kumam P (2015) Fixed point theorems for cyclic operators with application in fractional integral inclusions with delays. Conference Publications
8.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, vol 198. Elsevier, AmsterdamMATH Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, vol 198. Elsevier, AmsterdamMATH
9.
Zurück zum Zitat Kilbas AA, Marichev OI, Samko SG (1993) Fractional integral and derivatives (theory and applications), vol 1. Gordon and Breach, BaselMATH Kilbas AA, Marichev OI, Samko SG (1993) Fractional integral and derivatives (theory and applications), vol 1. Gordon and Breach, BaselMATH
10.
Zurück zum Zitat Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442MathSciNetMATH Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442MathSciNetMATH
11.
Zurück zum Zitat Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, SingaporeMATH Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, SingaporeMATH
12.
Zurück zum Zitat Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371(6):461–580MathSciNetMATH Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371(6):461–580MathSciNetMATH
13.
Zurück zum Zitat Matignon D (1996) Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, IMACS. IEEE-SMC Lille, France, vol 2, pp 963–968 Matignon D (1996) Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, IMACS. IEEE-SMC Lille, France, vol 2, pp 963–968
14.
Zurück zum Zitat Matignon D, d’Andrea B (1997) Novel, observer-based controllers for fractional differential systems, In: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, vol 5. IEEE, pp 4967–4972 Matignon D, d’Andrea B (1997) Novel, observer-based controllers for fractional differential systems, In: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, vol 5. IEEE, pp 4967–4972
15.
Zurück zum Zitat Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52MathSciNetMATH Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52MathSciNetMATH
16.
Zurück zum Zitat Meerschaert MM, Sabzikar F, Phanikumar MS, Zeleke A (2014) Tempered fractional time series model for turbulence in geophysical flows. J Stat Mech Theory Exp 2014(9):P09023 Meerschaert MM, Sabzikar F, Phanikumar MS, Zeleke A (2014) Tempered fractional time series model for turbulence in geophysical flows. J Stat Mech Theory Exp 2014(9):P09023
17.
Zurück zum Zitat Sheng H, Chen Y, Qiu T (2011) Fractional processes and fractional-order signal processing: techniques and applications. Springer, BerlinMATH Sheng H, Chen Y, Qiu T (2011) Fractional processes and fractional-order signal processing: techniques and applications. Springer, BerlinMATH
18.
Zurück zum Zitat Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U (2005) Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Polym Sci 98(2):923–935 Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U (2005) Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Polym Sci 98(2):923–935
19.
Zurück zum Zitat Schumer R, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Eulerian derivation of the fractional advection–dispersion equation. J Contam Hydrol 48(1–2):69–88 Schumer R, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Eulerian derivation of the fractional advection–dispersion equation. J Contam Hydrol 48(1–2):69–88
20.
Zurück zum Zitat Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologicaacta 33(3):210–219 Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologicaacta 33(3):210–219
21.
Zurück zum Zitat Raberto M, Scalas E, Mainardi F (2002) Waiting-times and returns in high-frequency financial data: an empirical study. Phys A Stat Mech Appl 314(1–4):749–755MATH Raberto M, Scalas E, Mainardi F (2002) Waiting-times and returns in high-frequency financial data: an empirical study. Phys A Stat Mech Appl 314(1–4):749–755MATH
22.
Zurück zum Zitat Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593MathSciNetMATH Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593MathSciNetMATH
23.
Zurück zum Zitat Meral F, Royston T, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15(4):939–945MathSciNetMATH Meral F, Royston T, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15(4):939–945MathSciNetMATH
24.
Zurück zum Zitat El-Sayed A, Gaber M (2006) The adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys Lett A 359(3):175–182MathSciNetMATH El-Sayed A, Gaber M (2006) The adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys Lett A 359(3):175–182MathSciNetMATH
25.
Zurück zum Zitat Golbabai A, Sayevand K (2011) Analytical treatment of differential equations with fractional coordinate derivatives. Comput Math Appl 62(3):1003–1012MathSciNetMATH Golbabai A, Sayevand K (2011) Analytical treatment of differential equations with fractional coordinate derivatives. Comput Math Appl 62(3):1003–1012MathSciNetMATH
26.
Zurück zum Zitat Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220MathSciNetMATH Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220MathSciNetMATH
27.
Zurück zum Zitat Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediterr J Math 14(3):134MathSciNetMATH Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediterr J Math 14(3):134MathSciNetMATH
28.
Zurück zum Zitat Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72MathSciNetMATH Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72MathSciNetMATH
29.
Zurück zum Zitat Heris MS, Javidi M (2019) Fractional backward differential formulas for the distributed-order differential equation with time delay. Bull Iran Math Soc 45:1159MathSciNetMATH Heris MS, Javidi M (2019) Fractional backward differential formulas for the distributed-order differential equation with time delay. Bull Iran Math Soc 45:1159MathSciNetMATH
30.
Zurück zum Zitat Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, CambridgeMATH Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, CambridgeMATH
31.
Zurück zum Zitat Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection–diffusion equation with time delay. SeMA J 1–19 Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection–diffusion equation with time delay. SeMA J 1–19
32.
Zurück zum Zitat Heris MS, Javidi M (2018) Second order difference approximation for a class of Riesz space fractional advection–dispersion equations with delay. arXiv preprint arXiv:1811.10513 Heris MS, Javidi M (2018) Second order difference approximation for a class of Riesz space fractional advection–dispersion equations with delay. arXiv preprint arXiv:​1811.​10513
33.
Zurück zum Zitat Diethelm K, Ford NJ, Freed AD (2002) A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22MathSciNetMATH Diethelm K, Ford NJ, Freed AD (2002) A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22MathSciNetMATH
34.
Zurück zum Zitat Deng W (2007) Short memory principle and a predictor–corrector approach for fractional differential equations. J Comput Appl Math 206(1):174–188MathSciNetMATH Deng W (2007) Short memory principle and a predictor–corrector approach for fractional differential equations. J Comput Appl Math 206(1):174–188MathSciNetMATH
35.
Zurück zum Zitat Deng W (2007) Numerical algorithm for the time fractional Fokker–Planck equation. J Comput Phys 227(2):1510–1522MathSciNetMATH Deng W (2007) Numerical algorithm for the time fractional Fokker–Planck equation. J Comput Phys 227(2):1510–1522MathSciNetMATH
36.
Zurück zum Zitat Li C, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230(9):3352–3368MathSciNetMATH Li C, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230(9):3352–3368MathSciNetMATH
37.
Zurück zum Zitat Daftardar-Gejji V, Sukale Y, Bhalekar C (2014) A new predictor–corrector method for fractional differential equations. Appl Math Comput 244:158–182MathSciNetMATH Daftardar-Gejji V, Sukale Y, Bhalekar C (2014) A new predictor–corrector method for fractional differential equations. Appl Math Comput 244:158–182MathSciNetMATH
38.
Zurück zum Zitat Yan Y, Pal K, Ford NJ (2014) Higher order numerical methods for solving fractional differential equations. BIT Numer Math 54(2):555–584MathSciNetMATH Yan Y, Pal K, Ford NJ (2014) Higher order numerical methods for solving fractional differential equations. BIT Numer Math 54(2):555–584MathSciNetMATH
39.
Zurück zum Zitat Asl MS, Javidi M (2017) An improved PC scheme for nonlinear fractional differential equations: error and stability analysis. J Comput Appl Math 324:101–117MathSciNetMATH Asl MS, Javidi M (2017) An improved PC scheme for nonlinear fractional differential equations: error and stability analysis. J Comput Appl Math 324:101–117MathSciNetMATH
40.
Zurück zum Zitat Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton–zooplankton system. J Comput Appl Math 339:193–207MathSciNetMATH Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton–zooplankton system. J Comput Appl Math 339:193–207MathSciNetMATH
41.
Zurück zum Zitat Liu Y, Roberts J, Yan Y (2018) A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int J Comput Math 95(6–7):1151–1169MathSciNet Liu Y, Roberts J, Yan Y (2018) A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int J Comput Math 95(6–7):1151–1169MathSciNet
42.
Zurück zum Zitat Liu Y, Roberts J, Yan Y (2018) Detailed error analysis for a fractional adams method with graded meshes. Numer Algorithms 78(4):1195–1216MathSciNetMATH Liu Y, Roberts J, Yan Y (2018) Detailed error analysis for a fractional adams method with graded meshes. Numer Algorithms 78(4):1195–1216MathSciNetMATH
43.
Zurück zum Zitat Zhang YN, Sun ZZ, Liao HL (2014) Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys 265:195–210MathSciNetMATH Zhang YN, Sun ZZ, Liao HL (2014) Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys 265:195–210MathSciNetMATH
44.
Zurück zum Zitat Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetMATH Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetMATH
45.
Zurück zum Zitat Cartea A, del Castillo-Negrete D (2007) Fractional diffusion models of option prices in markets with jumps. Phys A Stat Mech Appl 374(2):749–763 Cartea A, del Castillo-Negrete D (2007) Fractional diffusion models of option prices in markets with jumps. Phys A Stat Mech Appl 374(2):749–763
46.
Zurück zum Zitat Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34(12–13):1399–1421MathSciNetMATH Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34(12–13):1399–1421MathSciNetMATH
47.
Zurück zum Zitat Meerschaert MM, Zhang Y, Baeumer B (2008) Tempered anomalous diffusion in heterogeneous systems. Geophys Res Lett 35:L17403 Meerschaert MM, Zhang Y, Baeumer B (2008) Tempered anomalous diffusion in heterogeneous systems. Geophys Res Lett 35:L17403
48.
Zurück zum Zitat Deng J, Zhao L, Wu Y (2017) Fast predictor–corrector approach for the tempered fractional differential equations. Numer Algorithms 74(3):717–754MathSciNetMATH Deng J, Zhao L, Wu Y (2017) Fast predictor–corrector approach for the tempered fractional differential equations. Numer Algorithms 74(3):717–754MathSciNetMATH
49.
Zurück zum Zitat Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 24. Elsevier Science Limited, AmsterdamMATH Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 24. Elsevier Science Limited, AmsterdamMATH
50.
Zurück zum Zitat Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34:1399–1421MathSciNetMATH Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34:1399–1421MathSciNetMATH
51.
Zurück zum Zitat Metzler R, Joseph K (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetMATH Metzler R, Joseph K (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77MathSciNetMATH
52.
Zurück zum Zitat Moghaddam BP, Machado JT, Babaei A (2018) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671MathSciNetMATH Moghaddam BP, Machado JT, Babaei A (2018) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671MathSciNetMATH
53.
Zurück zum Zitat Meerschaert MM, Sabzikar F (2013) Tempered fractional Brownian motion. Stat Probab Lett 83(10):2269–2275MathSciNetMATH Meerschaert MM, Sabzikar F (2013) Tempered fractional Brownian motion. Stat Probab Lett 83(10):2269–2275MathSciNetMATH
54.
Zurück zum Zitat Li C, Deng W, Zhao L (2019) Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin Dyn Syst B 24(4):1989–2015MathSciNetMATH Li C, Deng W, Zhao L (2019) Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin Dyn Syst B 24(4):1989–2015MathSciNetMATH
55.
Zurück zum Zitat Kelley CT (2003) Solving nonlinear equations with Newton’s method, vol 1. SIAM, PhiladelphiaMATH Kelley CT (2003) Solving nonlinear equations with Newton’s method, vol 1. SIAM, PhiladelphiaMATH
Metadaten
Titel
A predictor–corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes
verfasst von
Mahdi Saedshoar Heris
Mohammad Javidi
Publikationsdatum
07.09.2019
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 12/2019
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-019-02979-3

Weitere Artikel der Ausgabe 12/2019

The Journal of Supercomputing 12/2019 Zur Ausgabe