Skip to main content

2021 | OriginalPaper | Buchkapitel

A Priori Approximation of Symmetries in Dynamic Probabilistic Relational Models

verfasst von : Nils Finke, Marisa Mohr

Erschienen in: KI 2021: Advances in Artificial Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lifted inference approaches reduce computational work as inference is performed using representatives for sets of indistinguishable random variables, which allows for tractable inference w.r.t. domain sizes in dynamic probabilistic relational models. Unfortunately, maintaining a lifted representation is challenging in practically relevant application domains, as evidence often breaks symmetries making lifted techniques fall back on their ground counterparts. In existing approaches asymmetric evidence is counteracted by merging similar but distinguishable objects when moving forward in time. While undoing splits a posteriori is reasonable, we propose learning approximate model symmetries a priori to prevent unnecessary splits due to inaccuracy or one-time events. In particular, we propose a multivariate ordinal pattern symbolization approach followed by spectral clustering to determine sets of domain entities behaving approximately the same over time. By using object clusters, we avoid unnecessary splits by keeping entities together that tend to behave the same over time. Understanding symmetrical and asymmetrical entity behavior a priori allows for increasing accuracy in inference by means of inferred evidence for unobserved entities to better represent reality. Empirical results show that our approach reduces unnecessary splits, i.e., improves runtimes, while keeping accuracy in inference high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: Proceedings of the 29th Conference on Artificial Intelligence (AAAI) (2015) Van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: Proceedings of the 29th Conference on Artificial Intelligence (AAAI) (2015)
5.
Zurück zum Zitat Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2003, New York, NY, USA, pp. 493–498 (2003) Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2003, New York, NY, USA, pp. 493–498 (2003)
6.
Zurück zum Zitat Finke, N., Gehrke, M., Braun, T., Potten, T., Möller, R.: Investigating matureness of probabilistic graphical models for dry-bulk shipping. In: Jaeger, M., Nielsen, T.D. (eds.) Proceedings of the 10th International Conference on Probabilistic Graphical Models. Proceedings of Machine Learning Research, vol. 138, pp. 197–208. PMLR, 23–25 September 2020 Finke, N., Gehrke, M., Braun, T., Potten, T., Möller, R.: Investigating matureness of probabilistic graphical models for dry-bulk shipping. In: Jaeger, M., Nielsen, T.D. (eds.) Proceedings of the 10th International Conference on Probabilistic Graphical Models. Proceedings of Machine Learning Research, vol. 138, pp. 197–208. PMLR, 23–25 September 2020
12.
Zurück zum Zitat Mohr, M., Wilhelm, F., Hartwig, M., Möller, R., Keller, K.: New approaches in ordinal pattern representations for multivariate time series. In: Proceedings of the 33rd International Florida Artificial Intelligence Research Society Conference (FLAIRS-33), pp. 124–129. AAAI Press (2020) Mohr, M., Wilhelm, F., Hartwig, M., Möller, R., Keller, K.: New approaches in ordinal pattern representations for multivariate time series. In: Proceedings of the 33rd International Florida Artificial Intelligence Research Society Conference (FLAIRS-33), pp. 124–129. AAAI Press (2020)
14.
Zurück zum Zitat Niepert, M., Van den Broeck, G.: Tractability through exchangeability: a new perspective on efficient probabilistic inference. In: AAAI-14 Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 2467–2475. AAAI Press (2014) Niepert, M., Van den Broeck, G.: Tractability through exchangeability: a new perspective on efficient probabilistic inference. In: AAAI-14 Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 2467–2475. AAAI Press (2014)
16.
Zurück zum Zitat Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 985–991. IJCAI Organization (2003) Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 985–991. IJCAI Organization (2003)
18.
Zurück zum Zitat Singla, P., Nath, A., Domingos, P.: Approximate lifting techniques for belief propagation. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2497–2504. AAAI 2014. AAAI Press (2014) Singla, P., Nath, A., Domingos, P.: Approximate lifting techniques for belief propagation. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2497–2504. AAAI 2014. AAAI Press (2014)
Metadaten
Titel
A Priori Approximation of Symmetries in Dynamic Probabilistic Relational Models
verfasst von
Nils Finke
Marisa Mohr
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_23