Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2018

06.02.2018

A Priori Assessment of an Iterative Deconvolution Method for LES Sub-grid Scale Variance Modelling

verfasst von: Z. M. Nikolaou, L. Vervisch

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An alternative method is proposed as a means for providing a closure for the sub-grid-scale variance, which is a key quantity in reacting flow simulations. The method is based on deconvolution, namely a constrained iterative deconvolution method combined with explicit filtering. The assessment of the method is conducted a priori using a direct numerical simulation database, and for the conditions tested in this study the method is found to provide quantitatively good estimates of both the un-filtered progress variable and its variance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. En. Combust. Sc. 38, 782–817 (2012)CrossRef Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. En. Combust. Sc. 38, 782–817 (2012)CrossRef
2.
Zurück zum Zitat Sagaut, P.: Large Eddy simulation for incompressible flows: an introduction, 2nd edn. Springer (2001) Sagaut, P.: Large Eddy simulation for incompressible flows: an introduction, 2nd edn. Springer (2001)
4.
Zurück zum Zitat Cook, A.W., Riley, J.J.: A sub-grid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868 (1994)CrossRef Cook, A.W., Riley, J.J.: A sub-grid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868 (1994)CrossRef
5.
6.
Zurück zum Zitat Girimaji, S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids A 8(5) (1996) Girimaji, S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids A 8(5) (1996)
7.
Zurück zum Zitat Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041 (1998)MathSciNetCrossRefMATH Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041 (1998)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Veynante, D., Knikker, R.: Comparison between LES results and experimental data in reacting flows. J. Turbul. 7(35) (2006) Veynante, D., Knikker, R.: Comparison between LES results and experimental data in reacting flows. J. Turbul. 7(35) (2006)
9.
Zurück zum Zitat Balarac, G., Pitsch, H., Raman, V.: Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids 20, 035114 (2008)CrossRefMATH Balarac, G., Pitsch, H., Raman, V.: Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids 20, 035114 (2008)CrossRefMATH
10.
Zurück zum Zitat Kaul, C.M., Raman, V., Balarac, G., Pitsch, H.: Numerical errors in the computation of subfilter scalar variance in large eddy simulations. Phys. Fluids 21, 055102 (2009)CrossRefMATH Kaul, C.M., Raman, V., Balarac, G., Pitsch, H.: Numerical errors in the computation of subfilter scalar variance in large eddy simulations. Phys. Fluids 21, 055102 (2009)CrossRefMATH
11.
Zurück zum Zitat Kaul, C.M., Raman, V.: A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulations. Phys. Fluids 23, 035102 (2011)CrossRef Kaul, C.M., Raman, V.: A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulations. Phys. Fluids 23, 035102 (2011)CrossRef
12.
Zurück zum Zitat Pera, C., Réveillon, J., Vervisch, L., Domingo, P.: Modelling subgrid scale mixture fraction variance in LES of evaporating spray. Combust. Flame 146, 635–648 (2006)CrossRef Pera, C., Réveillon, J., Vervisch, L., Domingo, P.: Modelling subgrid scale mixture fraction variance in LES of evaporating spray. Combust. Flame 146, 635–648 (2006)CrossRef
13.
Zurück zum Zitat Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)CrossRef Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)CrossRef
14.
Zurück zum Zitat Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame 158, 1340–1357 (2011)CrossRef Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame 158, 1340–1357 (2011)CrossRef
15.
Zurück zum Zitat Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., Domingo, P.: Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame 155, 247–266 (2008)CrossRef Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., Domingo, P.: Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame 155, 247–266 (2008)CrossRef
16.
Zurück zum Zitat Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetCrossRefMATH Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Kempf, A., Malalasekera, W., Ranga-Dinesh, K.J., Stein, O.: Large eddy simulations of swirling non-premixed flames with flamelet models: a comparison of numerical methods. Flow Turb. Combust. 81, 523–561 (2008)CrossRefMATH Kempf, A., Malalasekera, W., Ranga-Dinesh, K.J., Stein, O.: Large eddy simulations of swirling non-premixed flames with flamelet models: a comparison of numerical methods. Flow Turb. Combust. 81, 523–561 (2008)CrossRefMATH
18.
Zurück zum Zitat Malalasekera, W., Ranga-Dinesh, K.J., Ibrahim, S.S., Masri, A.R.: LES of recirculation and vortex breakdown in swirling flames. Combust. Sci. Techn. 180, 809–832 (2008)CrossRef Malalasekera, W., Ranga-Dinesh, K.J., Ibrahim, S.S., Masri, A.R.: LES of recirculation and vortex breakdown in swirling flames. Combust. Sci. Techn. 180, 809–832 (2008)CrossRef
19.
Zurück zum Zitat Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)CrossRef Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)CrossRef
20.
Zurück zum Zitat Knudsen, E., Kolla, H., Hawkes, E.R., Pitsch, H.: LES of a premixed jet flame DNS using a strained flamelet model. Combust. Flame 160, 2911–2927 (2013)CrossRef Knudsen, E., Kolla, H., Hawkes, E.R., Pitsch, H.: LES of a premixed jet flame DNS using a strained flamelet model. Combust. Flame 160, 2911–2927 (2013)CrossRef
21.
Zurück zum Zitat Langella, I., Swaminathan, N.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Th. Model. 20, 410–440 (2016)MathSciNetCrossRef Langella, I., Swaminathan, N.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Th. Model. 20, 410–440 (2016)MathSciNetCrossRef
22.
Zurück zum Zitat Langella, I., Swaminathan, N., Pitz, R.W.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Flame 173, 161–178 (2016)CrossRef Langella, I., Swaminathan, N., Pitz, R.W.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Flame 173, 161–178 (2016)CrossRef
23.
Zurück zum Zitat Hernandez, F.E., Yuen, F.C., Groth, C.P., Gulder, O.L.: LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst. 33, 1365–1371 (2011)CrossRef Hernandez, F.E., Yuen, F.C., Groth, C.P., Gulder, O.L.: LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst. 33, 1365–1371 (2011)CrossRef
24.
Zurück zum Zitat Leonard, A.: Energy cascade in large eddy simulation of turbulent fluid flows. Adv. Geophys. 18A, 237–248 (1974) Leonard, A.: Energy cascade in large eddy simulation of turbulent fluid flows. Adv. Geophys. 18A, 237–248 (1974)
25.
Zurück zum Zitat Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)CrossRefMATH Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)CrossRefMATH
26.
Zurück zum Zitat Geurts, B.G.: Inverse modeling for large-eddy simulation. Phys. Fluids 9, 3585 (1997)CrossRef Geurts, B.G.: Inverse modeling for large-eddy simulation. Phys. Fluids 9, 3585 (1997)CrossRef
27.
Zurück zum Zitat Domaradzki, J.A., Saiki, E.M.: A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9, 2148 (1997)CrossRef Domaradzki, J.A., Saiki, E.M.: A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9, 2148 (1997)CrossRef
28.
Zurück zum Zitat Stolz, S., Adams, N.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699 (1999)CrossRefMATH Stolz, S., Adams, N.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699 (1999)CrossRefMATH
29.
Zurück zum Zitat Stolz, S., Adams, N.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997 (2001)CrossRefMATH Stolz, S., Adams, N.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997 (2001)CrossRefMATH
30.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic sub-grid scale eddy viscosity model. Phys. Fluids 3, 1760 (1991)CrossRefMATH Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic sub-grid scale eddy viscosity model. Phys. Fluids 3, 1760 (1991)CrossRefMATH
31.
Zurück zum Zitat Bose, S., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26, 015104 (2014)CrossRef Bose, S., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26, 015104 (2014)CrossRef
32.
Zurück zum Zitat Locci, C., Vervisch, L.: Eulerian scalar projection in Lagrangian point source context: an approximate inverse filtering approach. Flow Turb. Combust. 363–368, 97 (2016) Locci, C., Vervisch, L.: Eulerian scalar projection in Lagrangian point source context: an approximate inverse filtering approach. Flow Turb. Combust. 363–368, 97 (2016)
33.
Zurück zum Zitat Mathew, J.: Large Eddy simulation of a premixed flame with approximate deconvolution modelling. Proc. Combust. Inst. 29, 1995–2000 (2002)CrossRef Mathew, J.: Large Eddy simulation of a premixed flame with approximate deconvolution modelling. Proc. Combust. Inst. 29, 1995–2000 (2002)CrossRef
34.
Zurück zum Zitat Vreman, A.W., Bastiaans, R.J., Geurts, B.J.: A similarity sub-grid model for premixed turbulent combustion. Flow Turbul. Combust. 82, 233–248 (2009)CrossRefMATH Vreman, A.W., Bastiaans, R.J., Geurts, B.J.: A similarity sub-grid model for premixed turbulent combustion. Flow Turbul. Combust. 82, 233–248 (2009)CrossRefMATH
35.
Zurück zum Zitat Domingo, P., Vervisch, L.: Large eddy simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst. 35, 1349–1357 (2015)CrossRef Domingo, P., Vervisch, L.: Large eddy simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst. 35, 1349–1357 (2015)CrossRef
36.
Zurück zum Zitat Domingo, P., Vervisch, L.: DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combust. Flame 177, 109–122 (2017)CrossRef Domingo, P., Vervisch, L.: DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combust. Flame 177, 109–122 (2017)CrossRef
38.
Zurück zum Zitat Shaw, P.J., Rawlins, D.J.: The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data. J. Micros. 163, 151–165 (1991)CrossRef Shaw, P.J., Rawlins, D.J.: The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data. J. Micros. 163, 151–165 (1991)CrossRef
39.
Zurück zum Zitat Starck, J., Pantin, E., Murtagh, F.: Deconvolution in astronomy: a review. Pacific Astron. Soc. 144, 1051–1069 (2002)CrossRef Starck, J., Pantin, E., Murtagh, F.: Deconvolution in astronomy: a review. Pacific Astron. Soc. 144, 1051–1069 (2002)CrossRef
40.
Zurück zum Zitat Sibarita, J.B.: Deconvolution microscopy. Adv. Biochem. Engin. Biotechnol. 95, 201–243 (2005) Sibarita, J.B.: Deconvolution microscopy. Adv. Biochem. Engin. Biotechnol. 95, 201–243 (2005)
41.
Zurück zum Zitat Wang, Q., Ihme, M.: Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017)CrossRef Wang, Q., Ihme, M.: Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017)CrossRef
42.
Zurück zum Zitat Cant, R.S.: SENGA2 User Guide. CUED/A–THERMO/TR67 (2012) Cant, R.S.: SENGA2 User Guide. CUED/A–THERMO/TR67 (2012)
43.
Zurück zum Zitat Nikolaou, Z.M., Swaminathan, N.: Direct numerical simulation of complex fuel combustion with detailed chemistry: physical insight and mean reaction rate modeling. Comb. Sc. Tech. 187, 1759–1789 (2015)CrossRef Nikolaou, Z.M., Swaminathan, N.: Direct numerical simulation of complex fuel combustion with detailed chemistry: physical insight and mean reaction rate modeling. Comb. Sc. Tech. 187, 1759–1789 (2015)CrossRef
44.
Zurück zum Zitat Nikolaou, Z., Swaminathan, N.: A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Comb. Flame 160, 56–75 (2013)CrossRef Nikolaou, Z., Swaminathan, N.: A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Comb. Flame 160, 56–75 (2013)CrossRef
45.
46.
Zurück zum Zitat Jansson, P.A.: Deconvolution with applications in spectroscopy. New York: Academic 3–4, 67–134 (1984) Jansson, P.A.: Deconvolution with applications in spectroscopy. New York: Academic 3–4, 67–134 (1984)
47.
Zurück zum Zitat Van Cittert, P.H.: Zum Einfluss der Spaltbreite auf die Intensitätverteilung in Spektralinien II. Z. Physik 69, 298–308 (1931)CrossRef Van Cittert, P.H.: Zum Einfluss der Spaltbreite auf die Intensitätverteilung in Spektralinien II. Z. Physik 69, 298–308 (1931)CrossRef
48.
Zurück zum Zitat Benjamin, P.: A quantitative evaluation of various iterative deconvolution algorithms. IEEE 40, 558–562 (1991) Benjamin, P.: A quantitative evaluation of various iterative deconvolution algorithms. IEEE 40, 558–562 (1991)
49.
Zurück zum Zitat Layton, W, Neda, M.: A similarity theory of approximate deconvolution models of turbulence. J. Math. Anal. Appl. 333, 416–429 (2007)MathSciNetCrossRefMATH Layton, W, Neda, M.: A similarity theory of approximate deconvolution models of turbulence. J. Math. Anal. Appl. 333, 416–429 (2007)MathSciNetCrossRefMATH
Metadaten
Titel
A Priori Assessment of an Iterative Deconvolution Method for LES Sub-grid Scale Variance Modelling
verfasst von
Z. M. Nikolaou
L. Vervisch
Publikationsdatum
06.02.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9884-0

Weitere Artikel der Ausgabe 1/2018

Flow, Turbulence and Combustion 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.