Skip to main content

2025 | OriginalPaper | Buchkapitel

A Privacy-Preserving Encryption Framework for Big Data Analysis

verfasst von : Taslima Khanam, Siuly Siuly, Kate Wang, Zhonglong Zheng

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The advent of big data has brought numerous conveniences and benefits but has also heightened users’ privacy concerns. Traditional methods like data masking and encryption secure user access control but suffer from storage space wastage due to data padding limitations. Moreover, these systems face decoding challenges and risk exposing confidential information after decryption. To overcome these issues, this study aims to develop a format-preserving encryption (FPE) based privacy-preserving technique to maintain user access control while optimizing anomaly detection accuracy and minimizing information loss. This method first generates a fixed-length key for each algorithm based on specified key length parameters, then continue the same length and format for the ciphertext as the original plaintext ensuring compatibility with databases. Our analysis of accuracy, information loss over ac-curacy, and information loss over root mean square error (RMSE) demonstrates the overall efficacy of the proposed method. Our experiment on brain computer interface (BCI) based electroencephalogram (EEG) data achieves 96.55% accuracy and requires only 2.41 s of computation for user access control. Remarkably, use of cryptography does not significantly impact performance compared to a non-privacy-preserving framework. Our developed framework will guide future researchers to develop more effective privacy protection mechanisms in BCI technology, ensuring the security of confidential information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cui, B., Zhang, B., Wang, K.: A data masking scheme for sensitive big data based on format-preserving encryption. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 518–524. IEEE (2017) Cui, B., Zhang, B., Wang, K.: A data masking scheme for sensitive big data based on format-preserving encryption. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 518–524. IEEE (2017)
3.
Zurück zum Zitat Khanam, T., Siuly, S., Wang, H.: An optimized artificial intelligence based technique for identifying motor imagery from EEGs for advanced brain computer interface technology. Neural Comput. Appl. 35(9), 6623–6634 (2023)CrossRef Khanam, T., Siuly, S., Wang, H.: An optimized artificial intelligence based technique for identifying motor imagery from EEGs for advanced brain computer interface technology. Neural Comput. Appl. 35(9), 6623–6634 (2023)CrossRef
4.
Zurück zum Zitat Siuly, S., Li, Y., Zhang, Y.: EEG signal analysis and classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 11, 141–144 (2016) Siuly, S., Li, Y., Zhang, Y.: EEG signal analysis and classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 11, 141–144 (2016)
5.
Zurück zum Zitat Siuly, S., Li, Y.: Discriminating the brain activities for brain-computer interface applications through the optimal allocation-based approach. Neural Comput. Appl. 26, 799–811 (2015)CrossRef Siuly, S., Li, Y.: Discriminating the brain activities for brain-computer interface applications through the optimal allocation-based approach. Neural Comput. Appl. 26, 799–811 (2015)CrossRef
6.
Zurück zum Zitat Alvi, A.M., Siuly, S., Wang, H.: Neurological abnormality detection from electroencephalography data: a review. Artif. Intell. Rev. 55(3), 2275–2312 (2022)CrossRef Alvi, A.M., Siuly, S., Wang, H.: Neurological abnormality detection from electroencephalography data: a review. Artif. Intell. Rev. 55(3), 2275–2312 (2022)CrossRef
7.
Zurück zum Zitat Farsi, L., Siuly, S., Kabir, E., Wang, H.: Classification of alcoholic EEG signals using a deep learning method. IEEE Sens. J. 21, 3552–3560 (2020)CrossRef Farsi, L., Siuly, S., Kabir, E., Wang, H.: Classification of alcoholic EEG signals using a deep learning method. IEEE Sens. J. 21, 3552–3560 (2020)CrossRef
8.
Zurück zum Zitat Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)CrossRef Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)CrossRef
9.
Zurück zum Zitat Tawhid, M.N.A., Siuly, S., Li, T.: A convolutional long short-term memory-based neural network for epilepsy detection from EEG. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)CrossRef Tawhid, M.N.A., Siuly, S., Li, T.: A convolutional long short-term memory-based neural network for epilepsy detection from EEG. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)CrossRef
10.
Zurück zum Zitat Tawhid, M.N.A., Siuly, S., Wang, K., Wang, H.: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals. IEEE Trans. Technol. Soc. 4(1), 76–86 (2023)CrossRef Tawhid, M.N.A., Siuly, S., Wang, K., Wang, H.: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals. IEEE Trans. Technol. Soc. 4(1), 76–86 (2023)CrossRef
12.
Zurück zum Zitat Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., Song, D.: On the feasibility of \(\{\)Side-Channel\(\}\) attacks with \(\{\)Brain-Computer\(\}\) interfaces. In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 143–158 (2012) Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., Song, D.: On the feasibility of \(\{\)Side-Channel\(\}\) attacks with \(\{\)Brain-Computer\(\}\) interfaces. In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 143–158 (2012)
13.
Zurück zum Zitat Mandal, A., Saxena, N.: SoK: your mind tells a lot about you: on the privacy leakage via brainwave devices. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 175–187 (2022) Mandal, A., Saxena, N.: SoK: your mind tells a lot about you: on the privacy leakage via brainwave devices. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 175–187 (2022)
14.
Zurück zum Zitat Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Discov. 23, 379–406 (2011)MathSciNetCrossRef Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Discov. 23, 379–406 (2011)MathSciNetCrossRef
15.
Zurück zum Zitat Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. World Wide Web (2022) Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. World Wide Web (2022)
16.
Zurück zum Zitat Kabir, E., Wang, H.: Conditional purpose based access control model for privacy protection. In: Proceedings of the Twentieth Australasian Conference on Australasian Database, vol. 92, pp. 137–144 (2009) Kabir, E., Wang, H.: Conditional purpose based access control model for privacy protection. In: Proceedings of the Twentieth Australasian Conference on Australasian Database, vol. 92, pp. 137–144 (2009)
17.
Zurück zum Zitat Ge, Y.-F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 31, 1–19 (2022)CrossRef Ge, Y.-F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 31, 1–19 (2022)CrossRef
18.
Zurück zum Zitat Popescu, A.B., et al.: Privacy preserving classification of EEG data using machine learning and homomorphic encryption. Appl. Sci. 11(16), 7360 (2021)CrossRef Popescu, A.B., et al.: Privacy preserving classification of EEG data using machine learning and homomorphic encryption. Appl. Sci. 11(16), 7360 (2021)CrossRef
19.
Zurück zum Zitat Agarwal, A., et al.: Protecting privacy of users in brain-computer interface applications. IEEE Trans. Neural Syst. Rehabil. Eng. 27(8), 1546–1555 (2019)CrossRef Agarwal, A., et al.: Protecting privacy of users in brain-computer interface applications. IEEE Trans. Neural Syst. Rehabil. Eng. 27(8), 1546–1555 (2019)CrossRef
20.
Zurück zum Zitat Hang, W., et al.: Fedeeg: federated EEG decoding via inter-subject structure matching. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023) Hang, W., et al.: Fedeeg: federated EEG decoding via inter-subject structure matching. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)
21.
Zurück zum Zitat Zhang, W., Wu, D.: Lightweight source-free transfer for privacy-preserving motor imagery classification. IEEE Trans. Cogn. Dev. Syst. 15(2), 938–949 (2022)CrossRef Zhang, W., Wu, D.: Lightweight source-free transfer for privacy-preserving motor imagery classification. IEEE Trans. Cogn. Dev. Syst. 15(2), 938–949 (2022)CrossRef
22.
Zurück zum Zitat Debie, E., Moustafa, N., Whitty, M.T.: A privacy-preserving generative adversarial network method for securing EEG brain signals. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020) Debie, E., Moustafa, N., Whitty, M.T.: A privacy-preserving generative adversarial network method for securing EEG brain signals. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
23.
Zurück zum Zitat Nakachi, T., Ishihara, H., Kiya, H.: Privacy-preserving network BMI decoding of covert spatial attention. In: 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–8. IEEE (2018) Nakachi, T., Ishihara, H., Kiya, H.: Privacy-preserving network BMI decoding of covert spatial attention. In: 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–8. IEEE (2018)
24.
Zurück zum Zitat Konduru, S.S., Saraswat, V.: Privacy preserving records sharing using blockchain and format preserving encryption. Cryptology ePrint Archive (2023) Konduru, S.S., Saraswat, V.: Privacy preserving records sharing using blockchain and format preserving encryption. Cryptology ePrint Archive (2023)
25.
Zurück zum Zitat Pérez-Resa, A., Garcia-Bosque, M., Sánchez-Azqueta, C., Celma, S.: A new method for format preserving encryption in high-data rate communications. IEEE Access 8, 21003–21016 (2020)CrossRef Pérez-Resa, A., Garcia-Bosque, M., Sánchez-Azqueta, C., Celma, S.: A new method for format preserving encryption in high-data rate communications. IEEE Access 8, 21003–21016 (2020)CrossRef
26.
Zurück zum Zitat Karopoulos, G., Ntantogian, C., Xenakis, C.: Masker: masking for privacy-preserving aggregation in the smart grid ecosystem. Comput. Secur. 73, 307–325 (2018)CrossRef Karopoulos, G., Ntantogian, C., Xenakis, C.: Masker: masking for privacy-preserving aggregation in the smart grid ecosystem. Comput. Secur. 73, 307–325 (2018)CrossRef
27.
Zurück zum Zitat Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2A and 2B. Front. Neurosci. 6, 39 (2012)CrossRef Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2A and 2B. Front. Neurosci. 6, 39 (2012)CrossRef
28.
Zurück zum Zitat Frikha, T., Chaari, A., Chaabane, F., Cheikhrouhou, O., Zaguia, A.: [retracted] healthcare and fitness data management using the IoT-based blockchain platform. J. Healthc. Eng. 2021(1), 9978863 (2021) Frikha, T., Chaari, A., Chaabane, F., Cheikhrouhou, O., Zaguia, A.: [retracted] healthcare and fitness data management using the IoT-based blockchain platform. J. Healthc. Eng. 2021(1), 9978863 (2021)
29.
Zurück zum Zitat Hernández-Álvarez, L., De Fuentes, J.M., González-Manzano, L., Encinas, L.H.: Smartcampp-smartphone-based continuous authentication leveraging motion sensors with privacy preservation. Pattern Recogn. Lett. 147, 189–196 (2021)CrossRef Hernández-Álvarez, L., De Fuentes, J.M., González-Manzano, L., Encinas, L.H.: Smartcampp-smartphone-based continuous authentication leveraging motion sensors with privacy preservation. Pattern Recogn. Lett. 147, 189–196 (2021)CrossRef
31.
Zurück zum Zitat Huang, B.F., Boutros, P.C.: The parameter sensitivity of random forests. BMC Bioinform. 17, 1–13 (2016)CrossRef Huang, B.F., Boutros, P.C.: The parameter sensitivity of random forests. BMC Bioinform. 17, 1–13 (2016)CrossRef
32.
Zurück zum Zitat Murphy, K.P., et al.: Naive Bayes classifiers. Univ. Br. Columbia 18(60), 1–8 (2006) Murphy, K.P., et al.: Naive Bayes classifiers. Univ. Br. Columbia 18(60), 1–8 (2006)
33.
Zurück zum Zitat Wu, H., et al.: Online privacy-preserving EEG classification by source-free transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. (2024) Wu, H., et al.: Online privacy-preserving EEG classification by source-free transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. (2024)
34.
Zurück zum Zitat Ge, Y.-F., Wang, H., Cao, J., Zhang, Y., Jiang, X.: Privacy-preserving data publishing: an information-driven distributed genetic algorithm. World Wide Web 27, 01 (2024)CrossRef Ge, Y.-F., Wang, H., Cao, J., Zhang, Y., Jiang, X.: Privacy-preserving data publishing: an information-driven distributed genetic algorithm. World Wide Web 27, 01 (2024)CrossRef
35.
Zurück zum Zitat Zhang, Y., Shen, Y., Wang, H., Yong, J., Jiang, X.: On secure wireless communications for IoT under eavesdropper collusion. IEEE Trans. Autom. Sci. Eng. 13(3), 1281–1293 (2016)CrossRef Zhang, Y., Shen, Y., Wang, H., Yong, J., Jiang, X.: On secure wireless communications for IoT under eavesdropper collusion. IEEE Trans. Autom. Sci. Eng. 13(3), 1281–1293 (2016)CrossRef
36.
Zurück zum Zitat You, M., Ge, Y.-F., Wang, K., Wang, H., Cao, J., Kambourakis, G.: Hierarchical adaptive evolution framework for privacy-preserving data publishing. World Wide Web 27, 07 (2024)CrossRef You, M., Ge, Y.-F., Wang, K., Wang, H., Cao, J., Kambourakis, G.: Hierarchical adaptive evolution framework for privacy-preserving data publishing. World Wide Web 27, 07 (2024)CrossRef
37.
Zurück zum Zitat Mongardi, S., Pinoli, P.: Exploring federated learning for emotion recognition on brain-computer interfaces. In: Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, pp. 622–626 (2024) Mongardi, S., Pinoli, P.: Exploring federated learning for emotion recognition on brain-computer interfaces. In: Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, pp. 622–626 (2024)
Metadaten
Titel
A Privacy-Preserving Encryption Framework for Big Data Analysis
verfasst von
Taslima Khanam
Siuly Siuly
Kate Wang
Zhonglong Zheng
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0576-7_7