Zum Inhalt

A proactive scheduling approach to steel rolling process with stochastic machine breakdown

  • 02.01.2017
Erschienen in:

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We address a proactive scheduling problem with stochastic machine breakdown, controllable processing time and deterioration effect considerations arising from steel production. The problem is to determine the pre-compression amount of each job’s processing time and the job sequence for the rolling process so as to achieve a robust predictive schedule in response to machine breakdown. Both robustness and stability of the predictive schedule are considered, in correspondence with the mean and variance of rescheduling cost that consists of match-up time cost and additional resource cost. Since the scenario-based approach to robustness evaluation of a predictive schedule is cursed with high computational burden, a surrogate-assisted multi-objective evolutionary algorithm based on Elitist non-dominated sorting genetic algorithm is proposed to solve the proactive scheduling problem under consideration. Support vector regression model is introduced to approximate the robustness of the each alternative schedule which surrogates the time-consuming simulation-based fitness evaluation process and saves more time for solution space search. In addition, a probabilistic sequencing strategy which takes advantage of each job’s ability to absorb disruption at low cost is introduced to guide the evolutionary search. Computational experiments of numerical and practical data indicate that the proposed proactive scheduling approach performs well in response to stochastic machine breakdown. The support vector regression model and the probabilistic sequencing strategy improve the performance of the proposed algorithm with respect to the convergence and diversity of the obtained Pareto front.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Titel
A proactive scheduling approach to steel rolling process with stochastic machine breakdown
Verfasst von
Du-Juan Wang
Feng Liu
Yaochu Jin
Publikationsdatum
02.01.2017
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 4/2019
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-016-9599-5
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
    Bildnachweise
    AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, NTT Data/© NTT Data, Wildix/© Wildix, arvato Systems GmbH/© arvato Systems GmbH, Ninox Software GmbH/© Ninox Software GmbH, Nagarro GmbH/© Nagarro GmbH, GWS mbH/© GWS mbH, CELONIS Labs GmbH, USU GmbH/© USU GmbH, G Data CyberDefense/© G Data CyberDefense, FAST LTA/© FAST LTA, Vendosoft/© Vendosoft, Kumavision/© Kumavision, Noriis Network AG/© Noriis Network AG, WSW Software GmbH/© WSW Software GmbH, tts GmbH/© tts GmbH, Asseco Solutions AG/© Asseco Solutions AG, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH